Çöp gazından gelen siloksanların enerji üretimindeki sınırlamaları ve gazdan uzaklaştırma metotları
Year 2017,
Volume: 4 Issue: 7, 42 - 53, 22.12.2017
Özge Östürk
,
Orhan Sevimoğlu
Abstract
Siloksanlar, oksijen ve silisyum atomlarından oluşan
ve alternatif olarak silisyumun yan zincirlerine hidrokarbon gruplarının
bağlandığı bileşiklerdir. Siloksanların özellikle arıtma çamurlarında ve katı
atık depolama alanlarında oluşan biyogazda bulunduğu tespit edilmiştir. Bu
çalışmada, enerji üretimi esnasında çöp gazında bulunan siloksanların
oksitlenmesi sonucu oluşan depozitlerin motorun yanma odasının çeperlerinde
birikmesi değerlendirilmiştir. Siloksanların oksitlenmesi sonucu gaz motorunun
parçalarında oluşan depozit, gaz motorunun işletme maliyetini arttırmaktadır.
Bununla birlikte depozit oluşumundan kaynaklı olarak motor parçalarının
temizlenmesi ve erken bakımdan dolayı enerji üretiminde kayıplara neden olması
söz konusudur. Bu çalışmada çöp gazında bulunan siloksanların gazdan
uzaklaştırılması amacıyla kullanılan metotlar incelenmiştir. Bu kapsamda,
adsorpsiyon yönteminin kullanılan en yaygın metot olduğu görülmüştür. Ancak,
absorpsiyon ve soğutarak uzaklaştırma metotlarının da kullanıldığı yöntemler
vurgulanmıştır.
References
- Zamorano M., Perez J.I.P., Paves I.A., Ridao A.R., Study of the energy potential of the biogas produced by an urban wastelandfill in Southern Spain, Renewable and Sustainable Energy Reviews, 11(5), 909-922, 2007.
- Sevimoglu O., Assessment of limiting factors for potential energy production in waste to energy projects. Fresenius Environmental Bulletin, 24(7), 2362-2373, 2015.
Devil R., Appels L., Baeyens J., Energy use of biogas hampered by the presence of siloxanes, Energy Conversion and Management, 47, 1711-1722, 2006.
- Huppmann R., Lohoff H.W., Schröder H.F., Cyclic siloxanes in the biological wastewater treatment process-determination, quantification and possibilities of elimination, Fresenius Journal of Analytical Chemistry, 354(1), 66-71, 1996.
- Tansel B., Surita S.C., Differences in volatilemethylsiloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations, Waste Management, 34(11), 2271-2277, 2007.
- Adanez J., Abad A., Garcia-Labiano F., Gayan P., de Diego L.F, Progress in chemical-looping combustion and reforming Technologies, Progress in Energy and Combustion Science, 38(2), 215-282, 2012.
- Urban W., Lohmann H., Gomez J.I.S., Catalytically upgraded landfillgas as a cost-effective alternative for fuelcells, Journal of Power Sources, 193(1), 359-366, 2009.
- Florez-Alvarez J., Egusquiza E., Analysis of damage caused by siloxanes in stationary reciprocating internal combustion engines operating with landfill gas, Engineering Failure analysis, 50, 29-38, 2015.
- Sevimoglu O., Tansel B., Effect of persistent trace compounds in landfill gas on engine performance duing energy recovery: A case study, Waste Management, 33(1), 74-80, 2013.
- Ajhar M., Travesset S., Yüce S., Melin T., Siloxane removal from landfill and digester gas – A technology overview. Bioresource Technology, 101, 2913-2923, 2010.
- Rasi S., Lantela J., Rintala J., Trace compounds affecting biogas energy utilization – A review, Energy Conversion and Management, 52, 3369-3375, 2011.
- Arnold L., Reduction and monitoring of biogas trace compounds, VTT Technical Research Centre of Finland, 2009.
- Nam S., Namkoong W., Kang J.H., Park J., Lee N., Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test, Waste Management, 33(10), 2091-2098, 2013.
- Sevimoglu O., Tansel B., Composition and source identification of deposits forming in landfill gas (LFG) engines and effect of activated carbon treatment on deposit composition, Journal of Environmental Management, 128, 300-305, 2013.
- Cabrera-Codony A., Montes-Moran M.A., Sanchez-Polo M., Martin M.J., Gonzalez-Olmos R., Biogas upgrading: Optimal activated carbon properties for siloxane removal, Environmental Science and technology, 48, 7187-7195, 2014.
- Gong H., Chen Z., Fan Y., Zhang M., Wu W., Surface modification of activated carbon for siloxane adsorption, Renewable Energy, 83, 144-150, 2015.
- Wheless E., Pierce J., Siloxanes in Landfill and Digester Gas Update, SWANA 27th Landfill Gas Conference, San Antonio , North America; 2004.
- Surita S.C., Tansel B., Preliminary investigation to characterize deposits forming during combustion of biogas from anaerobic digesters and landfills, Renewable Energy, 80, 674-681, 2015.
- Schweigkofler M., Niessner R., Removal of siloxanes in biogases, Journal of Hazardous Materials, 83(3), 183-196, 2001.
- Finocchio E., Montanari T., Garuti G., Pistarino C., Federici F., Cugino M., Busca G., Purification of biogases from siloxanes by adsorption: on the regenerability of activated carbonsorbents, Energy & Fuels, 23, 4156-4159, 2009.
- Varaprath S., Stutts D.H., Kozerski G.E., A primer on the analytical aspests of silicones at trace levels-challenges and artifacts – a review, Silicon Chem, 3:79-102, 2006.
- Sigot l., Ducom G., Benadda B., Laboure C., Adsorption of octamethylcyclotetrasiloxane on silica gel for biogas purification, Fuel, 135, 205-209, 2014.
- Sigot l., Ducom G., Benadda B., Laboure C., Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell, Enviromental Technology, 37:1, 86-95, 2016.
- Yu M., Gong H., Chen Z., Zhang M., Adsorption characteristics of activated carbon for siloxanes, Environmental Chemical Engineering, 1, 1182-1187, 2013.
- Kuhn J.N., Elwell A.C., Elsaed N.H., Joseph B., Requirments, techniques, and costs for contaminants removal from landfill gas, Waste Management, 2017 (http://dx.doi.org/10.1016/j.wasman.2017.02.001).
- Gilbert A.R., Kantor S.W., Transient catalysts fort he polymerization of organosiloxanes, Journal of Polymer Science, 40(136), 35-58, 1959.
- Ghorbel L., Tatin R., Couvert A., Relevance of an organic solvent for absorption of siloxanes, Environmental Technology, 35:3, 372-382, 2014.
- Devia C.R., Subrenat A., absorption of a linear (L2) and a cyclic (D4) siloxane using different oils: application to biogas treatment, Environmental Technology, 34:23, 3117-3127, 2013.
- Lantela J., Rasi S., Lehtinen J., Rintala J., Landfill gas upgrading with pilot-scale water scrubber: Performance assessment with absorption water recycling, Applied Energy, 92, 307-314, 2012.
- Piechota G., Iglinski B., Buczkowski R., Development of measurement techniques for determination main and hazardous components in biogas utilised for energy purposes, Energy Conversion and Management, 68, 219-226, 2015.
Year 2017,
Volume: 4 Issue: 7, 42 - 53, 22.12.2017
Özge Östürk
,
Orhan Sevimoğlu
References
- Zamorano M., Perez J.I.P., Paves I.A., Ridao A.R., Study of the energy potential of the biogas produced by an urban wastelandfill in Southern Spain, Renewable and Sustainable Energy Reviews, 11(5), 909-922, 2007.
- Sevimoglu O., Assessment of limiting factors for potential energy production in waste to energy projects. Fresenius Environmental Bulletin, 24(7), 2362-2373, 2015.
Devil R., Appels L., Baeyens J., Energy use of biogas hampered by the presence of siloxanes, Energy Conversion and Management, 47, 1711-1722, 2006.
- Huppmann R., Lohoff H.W., Schröder H.F., Cyclic siloxanes in the biological wastewater treatment process-determination, quantification and possibilities of elimination, Fresenius Journal of Analytical Chemistry, 354(1), 66-71, 1996.
- Tansel B., Surita S.C., Differences in volatilemethylsiloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations, Waste Management, 34(11), 2271-2277, 2007.
- Adanez J., Abad A., Garcia-Labiano F., Gayan P., de Diego L.F, Progress in chemical-looping combustion and reforming Technologies, Progress in Energy and Combustion Science, 38(2), 215-282, 2012.
- Urban W., Lohmann H., Gomez J.I.S., Catalytically upgraded landfillgas as a cost-effective alternative for fuelcells, Journal of Power Sources, 193(1), 359-366, 2009.
- Florez-Alvarez J., Egusquiza E., Analysis of damage caused by siloxanes in stationary reciprocating internal combustion engines operating with landfill gas, Engineering Failure analysis, 50, 29-38, 2015.
- Sevimoglu O., Tansel B., Effect of persistent trace compounds in landfill gas on engine performance duing energy recovery: A case study, Waste Management, 33(1), 74-80, 2013.
- Ajhar M., Travesset S., Yüce S., Melin T., Siloxane removal from landfill and digester gas – A technology overview. Bioresource Technology, 101, 2913-2923, 2010.
- Rasi S., Lantela J., Rintala J., Trace compounds affecting biogas energy utilization – A review, Energy Conversion and Management, 52, 3369-3375, 2011.
- Arnold L., Reduction and monitoring of biogas trace compounds, VTT Technical Research Centre of Finland, 2009.
- Nam S., Namkoong W., Kang J.H., Park J., Lee N., Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test, Waste Management, 33(10), 2091-2098, 2013.
- Sevimoglu O., Tansel B., Composition and source identification of deposits forming in landfill gas (LFG) engines and effect of activated carbon treatment on deposit composition, Journal of Environmental Management, 128, 300-305, 2013.
- Cabrera-Codony A., Montes-Moran M.A., Sanchez-Polo M., Martin M.J., Gonzalez-Olmos R., Biogas upgrading: Optimal activated carbon properties for siloxane removal, Environmental Science and technology, 48, 7187-7195, 2014.
- Gong H., Chen Z., Fan Y., Zhang M., Wu W., Surface modification of activated carbon for siloxane adsorption, Renewable Energy, 83, 144-150, 2015.
- Wheless E., Pierce J., Siloxanes in Landfill and Digester Gas Update, SWANA 27th Landfill Gas Conference, San Antonio , North America; 2004.
- Surita S.C., Tansel B., Preliminary investigation to characterize deposits forming during combustion of biogas from anaerobic digesters and landfills, Renewable Energy, 80, 674-681, 2015.
- Schweigkofler M., Niessner R., Removal of siloxanes in biogases, Journal of Hazardous Materials, 83(3), 183-196, 2001.
- Finocchio E., Montanari T., Garuti G., Pistarino C., Federici F., Cugino M., Busca G., Purification of biogases from siloxanes by adsorption: on the regenerability of activated carbonsorbents, Energy & Fuels, 23, 4156-4159, 2009.
- Varaprath S., Stutts D.H., Kozerski G.E., A primer on the analytical aspests of silicones at trace levels-challenges and artifacts – a review, Silicon Chem, 3:79-102, 2006.
- Sigot l., Ducom G., Benadda B., Laboure C., Adsorption of octamethylcyclotetrasiloxane on silica gel for biogas purification, Fuel, 135, 205-209, 2014.
- Sigot l., Ducom G., Benadda B., Laboure C., Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell, Enviromental Technology, 37:1, 86-95, 2016.
- Yu M., Gong H., Chen Z., Zhang M., Adsorption characteristics of activated carbon for siloxanes, Environmental Chemical Engineering, 1, 1182-1187, 2013.
- Kuhn J.N., Elwell A.C., Elsaed N.H., Joseph B., Requirments, techniques, and costs for contaminants removal from landfill gas, Waste Management, 2017 (http://dx.doi.org/10.1016/j.wasman.2017.02.001).
- Gilbert A.R., Kantor S.W., Transient catalysts fort he polymerization of organosiloxanes, Journal of Polymer Science, 40(136), 35-58, 1959.
- Ghorbel L., Tatin R., Couvert A., Relevance of an organic solvent for absorption of siloxanes, Environmental Technology, 35:3, 372-382, 2014.
- Devia C.R., Subrenat A., absorption of a linear (L2) and a cyclic (D4) siloxane using different oils: application to biogas treatment, Environmental Technology, 34:23, 3117-3127, 2013.
- Lantela J., Rasi S., Lehtinen J., Rintala J., Landfill gas upgrading with pilot-scale water scrubber: Performance assessment with absorption water recycling, Applied Energy, 92, 307-314, 2012.
- Piechota G., Iglinski B., Buczkowski R., Development of measurement techniques for determination main and hazardous components in biogas utilised for energy purposes, Energy Conversion and Management, 68, 219-226, 2015.