Research Article
BibTex RIS Cite

PSCAD/EMTDC Simülasyon Programı kullanılarak bir Mikro Şebekenin Yük Frekans Kontrolü (LFC)

Year 2021, Volume: 8 Issue: 15, 328 - 342, 31.12.2021
https://doi.org/10.54365/adyumbd.939716

Abstract

Güç kalitesinin sürekliliği, günümüzün modern şebeke yapısında ve geleceğin akıllı şebeke yapısında önemlidir. Yenilenebilir enerji kaynaklarının mevcut şebeke sistemine dâhil edilmesi ve teknolojik cihazların kullanımının artması güç kalitesinin düşmesine neden olacaktır. Güç sistemi harmonikleri, güç kalitesinde düşüşe neden olan faktörlerden biri olarak nitelendirilebilir. Bu faktörün etkileri önlenmezse, güç sistemlerinin performansında ve güvenilirliğinde ekonomik kayıplara neden olacak bir düşüşe yol açacaktır. Bu çalışmada, yakın gelecekte hayatımızda çok önemli bir rol oynayacak ve muhtemelen yeni şebeke altyapısına örnek olabilecek bir mikro şebeke tasarlanmıştır. Yukarıda bahsedilen bu mikro şebeke, PSCAD/EMTCD programı ile simule edilmiştir. Mikro şebekelerin, sistem güvenilirliğini artırmak, dağıtık üretim (DG) birimleri arasında paylaşmak ve frekans-gerilim değerlerini belirli sınırlarda tutmak için kontrol yöntemlerinin kullanması gerekmektedir. Bu çalışmada en çok kullanılan yöntemlerden biri olması ve literatürdeki başarısı kanıtlanmış olması nedeniyle droop control yöntemi tercih edilmiştir. Tasarlanan sistem dört farklı senaryo ile test edilmiş ve sonuçlar tartışılmıştır. Güç kalitesini etkileyen nedenlerden biri olan yük frekansı kontrolü (LFC) özellikle analiz edildi. Elektrikli araçların (EV) sisteme dâhil edilmesi durumunda yeni çözüm önerileri sonucunda sağlanan ek maliyetler ve avantajlar değerlendirilmiştir. Özellikle çift yönlü enerji akış (V2G) özelliğine sahip elektrikli araçların şebekeye bağlanmaları sonucu ortaya çıkan yeni durumlar incelenmiştir.

References

  • [1] Gayen P. K., Jana A.: 'An ANFIS based improved control action for single phase utility or micro-grid connected battery energy storage system', Journal of Cleaner Production, 2017, 164, pp. 1034–1049
  • [2] Karaman Ömer Ali, Ağır Tuba Tanyıldızı, Arsel İsmail.: 'Estimation of solar radiation using modern methods', Alexandria Engineering Journal, 2021, 60.2: 2447-2455.
  • [3] Elsisi M., Soliman M., Aboelela M.A.S., Mansour W.: 'Bat inspired algorithm based optimal design of model predictive load frequency control', Electrical Power and Energy Systems, 2016, 83, pp. 426–423
  • [4] Aziz A., Oo A. T., Stojcevski A.: 'Analysis of frequency sensitive wind plant penetration effect on load frequency control of hybrid power system', Electrical Power and Energy Systems, 2018, 99, pp. 603–617
  • [5] Dong L., Zhang Y., Zhiqiang G.: 'A robust decentralized load frequency controller for interconnected power systems', ISA Transactions, 2012, 51, pp. 410–419
  • [6] Tan W., Hao Y., Li D.: 'Load frequency control in deregulated environments via active disturbance rejection', Electrical Power and Energy Systems, 2015, 66, pp. 166–177
  • [7] Sekhar G.T.C., Sahu R.K., Baliarsingh A.K., Panda S.: 'Load frequency control of power system under deregulated environments using optimal firefly algorithm', Electrical Power and Energy Systems, 2016, 74, pp. 195–211
  • [8] Maslo K., Kolcun M.: 'Load–frequency control management in island operation', Electrical Power Systems Research, 2014, 114, pp. 10–20
  • [9] Khooban M. H.., Niknam T., Frede B.: 'A new load frequency control strategy for micro-grids with considering electrical vehicles', Electrical Power Systems Research, 2017, 143, pp. 585–598
  • [10] Waraich A. R., Galus D. M., Cristoph D., Balmer M., Andersson G., Axhausen W. K.: ' Plug-in hybrid electric vehicles and smart grids: Investigations based on a microsimulation', Transportation Research Part C, 2013, 28, pp. 74–86
  • [11] Tan M. K., Ramachandaramurthy K. V., Yong Y.J.: 'Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization', Renewable and Sustainable Energy Reviews, 2016, 53, pp. 720–732
  • [12] Falahati S., Taher A. S., Mohammad S.: 'A new smart charging method for EVs for frequency control of smart grid', Electrical Power and Energy Systems, 2016, 83, pp. 458–469
  • [13] Panwar K. L., Reddy S. K., Kumar R., Panigrahi B. K., Vyas S.: 'Strategic Energy Management (SEM) in a micro grid with modern grid interactive electric vehicle', Energy Conversion and Management, 2015, 106, pp. 41–52
  • [14] Kavousi-Fard A., Abunasri A., Alireza Z., Hoseinzadeh R.: 'Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids', Energy, 2014, 78, pp. 904–915
  • [15] Kamankesh H., Agelidis G.V., Kavousi-Fard A.: 'Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand', Energy, 2016, 100, pp. 285–297
  • [16] Aliasghari P., Mohammadi-Ivatloo B., Alipour M., Abapour M.: 'Optimal scheduling of plug-in electric vehicles and renewable microgrid in energy and reserve markets considering demand response program', Journal of Cleaner Production, 2018, 186, pp. 293–303
  • [17] Drude L., Niknam T., Junior P. C. L., Rüther R.: 'Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment', Renewable Energy, 2014, 68, pp. 443–451
  • [18] Peng C., Jianxiao Z., Lian L.: 'Dispatching strategies of electric vehicles participating in frequency regulation on power grid: A review', Renewable and Sustainable Energy Reviews, 2017, 68, pp. 147-152
  • [19] Shaukat N., Khan B., Ali S. M., Mehmood C. A., Khan J., Farid U., Majid M., Anwar S. M., Jawad M., Ullah Z.: 'A survey on electric vehicle transportation within smart grid system', Renewable and Sustainable Energy Reviews, 2018, 81, pp. 1329–1349
  • [20]Bahramara S., Heriş G.: 'Robust optimization of micro-grids operation problem in the presence of electric vehicles', Renewable Energy, 2018, 37, pp. 388–395
  • [21] Ferro G., Laureri F., Minciardi R., Robba M.: 'An optimization model for electrical vehicles scheduling in a smart grid', Sustainable Energy, Grids and Grids, 2018, 14, pp. 62-70W.-K. Chen, Linear Networks and Systems (Book style). Belmont, CA: Wadsworth, 1993, pp. 123–135.
  • [22] Vandoorn, T. L., Meersman, B., Degroote, L., Renders, B., & Vandevelde, L. (2011). A control strategy for islanded microgrids with dc-link voltage control. IEEE Transactions on Power Delivery, 26(2), 703-713.
  • [23] Mohd, A., Ortjohann, E., Morton, D., & Omari, O. (2010). Review of control techniques for inverters parallel operation. Electric Power Systems Research, 80(12), 1477-1487.
  • [24] Reza, M., Sudarmadi, D., Viawan, F. A., Kling, W. L., & Van Der Sluis, L. (2006, October). Dynamic stability of power systems with power electronic interfaced DG. In 2006 IEEE PES Power Systems Conference and Exposition (pp. 1423-1428). IEEE.
  • [25] Slootweg, J. G., & Kling, W. L. (2002, July). Impacts of distributed generation on power system transient stability. In IEEE Power Engineering Society Summer Meeting, (Vol. 2, pp. 862-867). IEEE.
  • [26] Borup, U., Blaabjerg, F., & Enjeti, P. N. (2001). Sharing of nonlinear load in parallel-connected three-phase converters. IEEE Transactions on Industry Applications, 37(6), 1817-1823.
  • [27] Khadem, S. K., Basu, M., & Conlon, M. F. (2011). Parallel operation of inverters and active power filters in distributed generation system—A review. Renewable and Sustainable Energy Reviews, 15(9), 5155-5168.

Load Frequency Control (LFC) of a Microgrid using PSCAD/EMTDC Simulation Program

Year 2021, Volume: 8 Issue: 15, 328 - 342, 31.12.2021
https://doi.org/10.54365/adyumbd.939716

Abstract

Continuity of the power quality is important in the modern day grid structure and the smart grid structure of the future. Incorporating the renewable energy sources to the present grid system and the increase of the usage of technology devices will cause the power quality to decrease. Power system harmonics can be characterized as one of the factors that causes a decrease in the power quality. The effects of this factor, if not prevented, will lead to a decrease in the performance and reliability of power systems which will cause economic losses. In this study, a micro grid, which will play a very important role in our lives in the near future and can possibly be an example to the new grid infrastructure, has been designed. This micro grid mentioned above has been simulated with the PSCAD/EMTCD program. Micro grids need to use control methods to increase system reliability, to share power between distributed generation (DG) units and to keep frequency-voltage values at certain limits. Droop control method is preferred in this paper since it is one of the most widely used methods and its success in literature has been proven. The designed system has been tested with four different scenarios and the results have been discussed. Load frequency control (LFC), one of the reasons that effect the power quality, was particularly analysed. The additional costs and the advantages provided as a result of novel solution proposals in the case of electric vehicles (EV) being incorporated to the system were evaluated. Particularly, provision of bidirectional energy flow of the vehicle to grid (V2G) featured electrical vehicles to the grid was examined.

References

  • [1] Gayen P. K., Jana A.: 'An ANFIS based improved control action for single phase utility or micro-grid connected battery energy storage system', Journal of Cleaner Production, 2017, 164, pp. 1034–1049
  • [2] Karaman Ömer Ali, Ağır Tuba Tanyıldızı, Arsel İsmail.: 'Estimation of solar radiation using modern methods', Alexandria Engineering Journal, 2021, 60.2: 2447-2455.
  • [3] Elsisi M., Soliman M., Aboelela M.A.S., Mansour W.: 'Bat inspired algorithm based optimal design of model predictive load frequency control', Electrical Power and Energy Systems, 2016, 83, pp. 426–423
  • [4] Aziz A., Oo A. T., Stojcevski A.: 'Analysis of frequency sensitive wind plant penetration effect on load frequency control of hybrid power system', Electrical Power and Energy Systems, 2018, 99, pp. 603–617
  • [5] Dong L., Zhang Y., Zhiqiang G.: 'A robust decentralized load frequency controller for interconnected power systems', ISA Transactions, 2012, 51, pp. 410–419
  • [6] Tan W., Hao Y., Li D.: 'Load frequency control in deregulated environments via active disturbance rejection', Electrical Power and Energy Systems, 2015, 66, pp. 166–177
  • [7] Sekhar G.T.C., Sahu R.K., Baliarsingh A.K., Panda S.: 'Load frequency control of power system under deregulated environments using optimal firefly algorithm', Electrical Power and Energy Systems, 2016, 74, pp. 195–211
  • [8] Maslo K., Kolcun M.: 'Load–frequency control management in island operation', Electrical Power Systems Research, 2014, 114, pp. 10–20
  • [9] Khooban M. H.., Niknam T., Frede B.: 'A new load frequency control strategy for micro-grids with considering electrical vehicles', Electrical Power Systems Research, 2017, 143, pp. 585–598
  • [10] Waraich A. R., Galus D. M., Cristoph D., Balmer M., Andersson G., Axhausen W. K.: ' Plug-in hybrid electric vehicles and smart grids: Investigations based on a microsimulation', Transportation Research Part C, 2013, 28, pp. 74–86
  • [11] Tan M. K., Ramachandaramurthy K. V., Yong Y.J.: 'Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization', Renewable and Sustainable Energy Reviews, 2016, 53, pp. 720–732
  • [12] Falahati S., Taher A. S., Mohammad S.: 'A new smart charging method for EVs for frequency control of smart grid', Electrical Power and Energy Systems, 2016, 83, pp. 458–469
  • [13] Panwar K. L., Reddy S. K., Kumar R., Panigrahi B. K., Vyas S.: 'Strategic Energy Management (SEM) in a micro grid with modern grid interactive electric vehicle', Energy Conversion and Management, 2015, 106, pp. 41–52
  • [14] Kavousi-Fard A., Abunasri A., Alireza Z., Hoseinzadeh R.: 'Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids', Energy, 2014, 78, pp. 904–915
  • [15] Kamankesh H., Agelidis G.V., Kavousi-Fard A.: 'Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand', Energy, 2016, 100, pp. 285–297
  • [16] Aliasghari P., Mohammadi-Ivatloo B., Alipour M., Abapour M.: 'Optimal scheduling of plug-in electric vehicles and renewable microgrid in energy and reserve markets considering demand response program', Journal of Cleaner Production, 2018, 186, pp. 293–303
  • [17] Drude L., Niknam T., Junior P. C. L., Rüther R.: 'Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment', Renewable Energy, 2014, 68, pp. 443–451
  • [18] Peng C., Jianxiao Z., Lian L.: 'Dispatching strategies of electric vehicles participating in frequency regulation on power grid: A review', Renewable and Sustainable Energy Reviews, 2017, 68, pp. 147-152
  • [19] Shaukat N., Khan B., Ali S. M., Mehmood C. A., Khan J., Farid U., Majid M., Anwar S. M., Jawad M., Ullah Z.: 'A survey on electric vehicle transportation within smart grid system', Renewable and Sustainable Energy Reviews, 2018, 81, pp. 1329–1349
  • [20]Bahramara S., Heriş G.: 'Robust optimization of micro-grids operation problem in the presence of electric vehicles', Renewable Energy, 2018, 37, pp. 388–395
  • [21] Ferro G., Laureri F., Minciardi R., Robba M.: 'An optimization model for electrical vehicles scheduling in a smart grid', Sustainable Energy, Grids and Grids, 2018, 14, pp. 62-70W.-K. Chen, Linear Networks and Systems (Book style). Belmont, CA: Wadsworth, 1993, pp. 123–135.
  • [22] Vandoorn, T. L., Meersman, B., Degroote, L., Renders, B., & Vandevelde, L. (2011). A control strategy for islanded microgrids with dc-link voltage control. IEEE Transactions on Power Delivery, 26(2), 703-713.
  • [23] Mohd, A., Ortjohann, E., Morton, D., & Omari, O. (2010). Review of control techniques for inverters parallel operation. Electric Power Systems Research, 80(12), 1477-1487.
  • [24] Reza, M., Sudarmadi, D., Viawan, F. A., Kling, W. L., & Van Der Sluis, L. (2006, October). Dynamic stability of power systems with power electronic interfaced DG. In 2006 IEEE PES Power Systems Conference and Exposition (pp. 1423-1428). IEEE.
  • [25] Slootweg, J. G., & Kling, W. L. (2002, July). Impacts of distributed generation on power system transient stability. In IEEE Power Engineering Society Summer Meeting, (Vol. 2, pp. 862-867). IEEE.
  • [26] Borup, U., Blaabjerg, F., & Enjeti, P. N. (2001). Sharing of nonlinear load in parallel-connected three-phase converters. IEEE Transactions on Industry Applications, 37(6), 1817-1823.
  • [27] Khadem, S. K., Basu, M., & Conlon, M. F. (2011). Parallel operation of inverters and active power filters in distributed generation system—A review. Renewable and Sustainable Energy Reviews, 15(9), 5155-5168.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Mehmet Şefik Üney 0000-0003-4743-0764

Ömer Ali Karaman 0000-0003-1640-861X

Publication Date December 31, 2021
Submission Date May 20, 2021
Published in Issue Year 2021 Volume: 8 Issue: 15

Cite

APA Üney, M. Ş., & Karaman, Ö. A. (2021). Load Frequency Control (LFC) of a Microgrid using PSCAD/EMTDC Simulation Program. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8(15), 328-342. https://doi.org/10.54365/adyumbd.939716
AMA Üney MŞ, Karaman ÖA. Load Frequency Control (LFC) of a Microgrid using PSCAD/EMTDC Simulation Program. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. December 2021;8(15):328-342. doi:10.54365/adyumbd.939716
Chicago Üney, Mehmet Şefik, and Ömer Ali Karaman. “Load Frequency Control (LFC) of a Microgrid Using PSCAD/EMTDC Simulation Program”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 15 (December 2021): 328-42. https://doi.org/10.54365/adyumbd.939716.
EndNote Üney MŞ, Karaman ÖA (December 1, 2021) Load Frequency Control (LFC) of a Microgrid using PSCAD/EMTDC Simulation Program. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8 15 328–342.
IEEE M. Ş. Üney and Ö. A. Karaman, “Load Frequency Control (LFC) of a Microgrid using PSCAD/EMTDC Simulation Program”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 15, pp. 328–342, 2021, doi: 10.54365/adyumbd.939716.
ISNAD Üney, Mehmet Şefik - Karaman, Ömer Ali. “Load Frequency Control (LFC) of a Microgrid Using PSCAD/EMTDC Simulation Program”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8/15 (December 2021), 328-342. https://doi.org/10.54365/adyumbd.939716.
JAMA Üney MŞ, Karaman ÖA. Load Frequency Control (LFC) of a Microgrid using PSCAD/EMTDC Simulation Program. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2021;8:328–342.
MLA Üney, Mehmet Şefik and Ömer Ali Karaman. “Load Frequency Control (LFC) of a Microgrid Using PSCAD/EMTDC Simulation Program”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 15, 2021, pp. 328-42, doi:10.54365/adyumbd.939716.
Vancouver Üney MŞ, Karaman ÖA. Load Frequency Control (LFC) of a Microgrid using PSCAD/EMTDC Simulation Program. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2021;8(15):328-42.