Research Article
BibTex RIS Cite

BİR TERMOELEKTRİK JENERATÖR SİSTEMİNİN ISI ALICISININ ISIL PERFORMANSINA FARKLI DIŞ ORTAM SICAKLIKLARININ ETKİSİ

Year 2021, Volume: 8 Issue: 15, 391 - 413, 31.12.2021
https://doi.org/10.54365/adyumbd.974337

Abstract

Bu çalışmada, turbo – şarjlı bir traktörde, kompresör ile ara soğutucu arasına yerleştirilen termoelektrik jeneratör sisteminin soğuk tarafındaki ısı alıcılarının farklı dış ortam sıcaklıkları için dış ortama verdikleri maksimum ısı transferi ve kanatlı yüzey verimleri Matlab programı kullanılarak belirlenmiştir. Mevcut literatürde otomobillerin termoelektrik jeneratörlerinde egzoz gazlarının ısıl enerjisi kullanılırken, bu çalışmada alternatif olarak termoelektrik jeneratörde kompresördeki basınçlı havanın ısıl enerjisi kullanılmıştır. Termoelektrik jeneratör sisteminin turbo – şarjlı traktörün kompresörü ile ara soğutucusu arasına yerleştirilmesi, sistemde elektrik gücü sağlamasının yanı sıra ara soğutucuya giren havanın daha düşük bir sıcaklıkta olmasını sağlamıştır ki bu da turbo – şarjlı traktörün motor veriminin artması için önemlidir. Dış ortam sıcaklığındaki artışla maksimum ısı transferi ve ısı taşınım katsayısının azaldığı tespit edilmiştir. Buna ilave olarak ısı alıcılarının kanatlı yüzey verimliliğinin dış ortam sıcaklığı ile arttığı belirlenmiştir. 268 K sıcaklığında gerçekleşen maksimum ısı transferinin 303 K sıcaklığına göre yaklaşık olarak %9.3 artış gösterdiği bulunmuştur. Ancak 303 K sıcaklığındaki kanatlı yüzey veriminin ise 268 K sıcaklığına göre yaklaşık olarak %1.3 daha yüksek olduğu tespit edilmiştir.

References

  • Wang Z, Han F, Ji Y, Li W. Redundant energy combination and recovery scheme for dual fuel carriers based on thermoelectric harvesting with a large temperature range. International Journal of Energy Research 2020; 1-17. DOI: 10.1002 / er.6324
  • He M, Wang E, Zhang Y, Zhang W, Zhang F, Zhao C. Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine. Applied Energy 2020; 274: 115298. DOI: 10.1016/j.apenergy.2020.115298
  • Luo D, Wang R, Yu W, Ahou, W. A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery. Applied Energy 2020; 270: 115181. DOI: 10.1016/j.apenergy.2020.115181
  • Ezzitouni S, Fernández-Yáñez P, Sánchez L, Armas, O. Global energy balance in a diesel engine with a thermoelectric generator. Applied Energy 2020; 269: 115139. DOI: 10.1016/j.apenergy.2020.115139
  • Ravi R, Pachamuthu S, Kasinathan P. Computational and experimental investigation on effective utilization of waste heat from diesel engine exhaust using a fin protracted heat exchanger. Energy 2020; 200: 117489. DOI: 10.1016/j.energy.2020.117489
  • Pacheco N, Brito FP, Vieira R, Martins J, Barbosa H, Goncalves LM. Compact automotive thermoelectric generator with embedded heat pipes for thermal control. Energy 2020; 197: 117154. DOI: 10.1016/j.energy.2020.117154
  • Karana DR, Sahoo RR. An experimental study on the thermal behavior of aluminum thermoelectric system integrated with engine exhaust. Experimental Heat Transfer 2020; 1730525. DOI: 10.1080/08916152.2020.1730525
  • Ramírez R, Gutiérrez AS, Eras JJC, Hernández B, Forero JD. Data supporting the evaluation of the energy recovery potential of thermoelectric generators in diesel engines. Data in Brief 2020; 28: 105075. DOI: 10.1016/j.dib.2019.105075
  • Sheikh R, Gholampour S, Fallahsohi H, Goodarzi M, Taheri MM, Bagheri M. Improving the efficiency of an exhaust thermoelectric generator based on changes in the baffle distribution of the heat exchanger. Journal of Thermal Analysis and Calorimetry 2020. DOI: 10.1007/s10973-019-09253-x
  • Sofyan SE, Jalaluddin MK, Bahri S. The performance of thermoelectric exhaust heat recovery system considering different heat source’s fin arrangements. Earth and Environmental Science 2020; 463: 012022. DOI: 10.1088/1755-1315/463/1/012022
  • Abbasi V, Tabar VS. Measurement and evaluation of produced energy by thermoelectric generator in vehicle. Measurement 2020; 107035. DOI: 10.1016/j.measurement.2019.107035
  • Ramírez R, Gutiérrez AS, Eras JJC, Valencia K, Hernández B, Forero JD. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. Journal of Cleaner Production 2019; 241: 118412. DOI: 10.1016/j.jclepro.2019.118412
  • Kim TY, Kwak J, Kim B. Application of compact thermoelectric generator to hybrid electric vehicle engine operating under real vehicle operating conditions. Energy Conversion and Management 2019; 201: 112150. DOI: 10.1016/j.enconman.2019.112150
  • Elzalik M, Rezk H, Mostafa R, Thomas J, Shehata EG. An experimental investigation on electrical performance and characterization of thermoelectric generator. International Journal of Energy Research 2019; 1-16. DOI: 10.1002/er.4873
  • Najjar YSH, Sallam A. Optimum design, heat transfer and performance analysis for thermoelectric energy recovery from the engine exhaust system. Journal of Electronic Materials 2019. DOI: 10.1007/s11664-019-07416-y
  • Nonthakarn P, Ekpanyapong M, Nontakaew U, Bohez E. Design and optimization of an integrated turbo - generator and thermoelectric generator for vehicle exhaust electrical energy recovery. Energies 2019; 12: 3134. DOI: 10.3390/en12163134
  • Kalteh M, Garmejani HA. Investigating the influence of Thomson effect on the performance of a thermoelectric generator in a waste heat recovery system. International Journal of Green Energy 2019. DOI: 10.1080/15435075.2019.1642896
  • Subramaniam H, Duraisamy S, Raghavan G, Govindan S. Design and development of a test rig for the performance evaluation of automotive exhaust thermoelectric generator. AIP Advances 2019. DOI: 10.1063/1.5093587
  • Al‐Nimr MA, Alajlouni AA. Internal combustion engine waste heat recovery by a thermoelectric generator inserted at combustion chamber walls. International Journal of Energy Research 2018; 1-13. DOI: 10.1002/er.4241
  • Eddine AN, Chalet D, Faure X, Aixala L, Chessé P. Effect of engine exhaust gas pulsations on the performance of a thermoelectric generator for wasted heat recovery: An experimental and analytical investigation. Energy 2018; 162: 715-727. DOI: 10.1016/j.energy.2018.08.065
  • Nithyanandam K, Mahajan RL. Evaluation of metal foam based thermoelectric generators for automobile waste heat recovery. International Journal of Heat and Mass Transfer 2018; 122: 877-883. DOI: 10.1016/j.ijheatmasstransfer.2018.02.029
  • Kim TY, Kwak J, Kim B. Energy harvesting performance of hexagonal shaped thermoelectric generator for passenger vehicle applications: An experimental approach. Energy Conversion and Management 2018; 160: 14-21. DOI: 10.1016/j.enconman.2018.01.032
  • Temizer İ, İlkılıç C. The performance and analysis of the thermoelectric generator system used in diesel engines. Renewable and Sustainable Energy Reviews 2016; 63: 141-151. DOI: 10.1016/j.rser.2016.04.068
  • Topalcı Ü, Gürbüz H, Akçay H, Demirtürk S. Buji ateşlemeli bir motorda egzoz atık ısı geri kazanımı için termoelektrik jeneratör modelinin geliştirilmesi. Mühendislik Bilimleri ve Tasarım Dergisi 2020; 8: 582-596. DOI: 10.21923/jesd.703886
  • Kunt MA, Güneş H. Comparing the recovery performance of different thermoelectric generator modules in an exhaust system of a diesel engine both experimentally and theoretically. Proceedings of The Institution of Mechanical Engineers Part D-Journal of Automobile Engineering 2020; 234: 183-190. DOI:10.1177/0954407019837786
  • Kim TY, Negash AA, Cho G. Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules. Energy Conversion and Management 2016; 124: 280-286. DOI: 10.1016/j.enconman.2016.07.013
  • Muralidhar N, Himabindu H, Ravikrishna RV. Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a Thermoelectric Generator. Energy 2018; DOI: 10.1016/j.energy.2018.02.023
  • Gürcan A. Farklı boyutlarda termoelektrik jeneratör kullanılarak egzoz ısı enerjisinin geri kazanımı. Yüksek Lisans Tezi. Denizli: Pamukkale Üniversitesi; 2019.
  • Potur RA. Faz IIIB emisyon standardına cevap veren dizel traktör motorunun tasarımı için gerçek çevrimin matematik modellenmesi ve optimum yanma kanununun belirlenmesi. Yüksek Lisans Tezi. İstanbul: İstanbul Teknik Üniversitesi; 2009.
  • Lee HS. Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. Wiley, Hoboken; 2010.
  • Lee HS. Thermoelectrics: Design and Materials. Wiley, Chichester; 2017.
Year 2021, Volume: 8 Issue: 15, 391 - 413, 31.12.2021
https://doi.org/10.54365/adyumbd.974337

Abstract

References

  • Wang Z, Han F, Ji Y, Li W. Redundant energy combination and recovery scheme for dual fuel carriers based on thermoelectric harvesting with a large temperature range. International Journal of Energy Research 2020; 1-17. DOI: 10.1002 / er.6324
  • He M, Wang E, Zhang Y, Zhang W, Zhang F, Zhao C. Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine. Applied Energy 2020; 274: 115298. DOI: 10.1016/j.apenergy.2020.115298
  • Luo D, Wang R, Yu W, Ahou, W. A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery. Applied Energy 2020; 270: 115181. DOI: 10.1016/j.apenergy.2020.115181
  • Ezzitouni S, Fernández-Yáñez P, Sánchez L, Armas, O. Global energy balance in a diesel engine with a thermoelectric generator. Applied Energy 2020; 269: 115139. DOI: 10.1016/j.apenergy.2020.115139
  • Ravi R, Pachamuthu S, Kasinathan P. Computational and experimental investigation on effective utilization of waste heat from diesel engine exhaust using a fin protracted heat exchanger. Energy 2020; 200: 117489. DOI: 10.1016/j.energy.2020.117489
  • Pacheco N, Brito FP, Vieira R, Martins J, Barbosa H, Goncalves LM. Compact automotive thermoelectric generator with embedded heat pipes for thermal control. Energy 2020; 197: 117154. DOI: 10.1016/j.energy.2020.117154
  • Karana DR, Sahoo RR. An experimental study on the thermal behavior of aluminum thermoelectric system integrated with engine exhaust. Experimental Heat Transfer 2020; 1730525. DOI: 10.1080/08916152.2020.1730525
  • Ramírez R, Gutiérrez AS, Eras JJC, Hernández B, Forero JD. Data supporting the evaluation of the energy recovery potential of thermoelectric generators in diesel engines. Data in Brief 2020; 28: 105075. DOI: 10.1016/j.dib.2019.105075
  • Sheikh R, Gholampour S, Fallahsohi H, Goodarzi M, Taheri MM, Bagheri M. Improving the efficiency of an exhaust thermoelectric generator based on changes in the baffle distribution of the heat exchanger. Journal of Thermal Analysis and Calorimetry 2020. DOI: 10.1007/s10973-019-09253-x
  • Sofyan SE, Jalaluddin MK, Bahri S. The performance of thermoelectric exhaust heat recovery system considering different heat source’s fin arrangements. Earth and Environmental Science 2020; 463: 012022. DOI: 10.1088/1755-1315/463/1/012022
  • Abbasi V, Tabar VS. Measurement and evaluation of produced energy by thermoelectric generator in vehicle. Measurement 2020; 107035. DOI: 10.1016/j.measurement.2019.107035
  • Ramírez R, Gutiérrez AS, Eras JJC, Valencia K, Hernández B, Forero JD. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. Journal of Cleaner Production 2019; 241: 118412. DOI: 10.1016/j.jclepro.2019.118412
  • Kim TY, Kwak J, Kim B. Application of compact thermoelectric generator to hybrid electric vehicle engine operating under real vehicle operating conditions. Energy Conversion and Management 2019; 201: 112150. DOI: 10.1016/j.enconman.2019.112150
  • Elzalik M, Rezk H, Mostafa R, Thomas J, Shehata EG. An experimental investigation on electrical performance and characterization of thermoelectric generator. International Journal of Energy Research 2019; 1-16. DOI: 10.1002/er.4873
  • Najjar YSH, Sallam A. Optimum design, heat transfer and performance analysis for thermoelectric energy recovery from the engine exhaust system. Journal of Electronic Materials 2019. DOI: 10.1007/s11664-019-07416-y
  • Nonthakarn P, Ekpanyapong M, Nontakaew U, Bohez E. Design and optimization of an integrated turbo - generator and thermoelectric generator for vehicle exhaust electrical energy recovery. Energies 2019; 12: 3134. DOI: 10.3390/en12163134
  • Kalteh M, Garmejani HA. Investigating the influence of Thomson effect on the performance of a thermoelectric generator in a waste heat recovery system. International Journal of Green Energy 2019. DOI: 10.1080/15435075.2019.1642896
  • Subramaniam H, Duraisamy S, Raghavan G, Govindan S. Design and development of a test rig for the performance evaluation of automotive exhaust thermoelectric generator. AIP Advances 2019. DOI: 10.1063/1.5093587
  • Al‐Nimr MA, Alajlouni AA. Internal combustion engine waste heat recovery by a thermoelectric generator inserted at combustion chamber walls. International Journal of Energy Research 2018; 1-13. DOI: 10.1002/er.4241
  • Eddine AN, Chalet D, Faure X, Aixala L, Chessé P. Effect of engine exhaust gas pulsations on the performance of a thermoelectric generator for wasted heat recovery: An experimental and analytical investigation. Energy 2018; 162: 715-727. DOI: 10.1016/j.energy.2018.08.065
  • Nithyanandam K, Mahajan RL. Evaluation of metal foam based thermoelectric generators for automobile waste heat recovery. International Journal of Heat and Mass Transfer 2018; 122: 877-883. DOI: 10.1016/j.ijheatmasstransfer.2018.02.029
  • Kim TY, Kwak J, Kim B. Energy harvesting performance of hexagonal shaped thermoelectric generator for passenger vehicle applications: An experimental approach. Energy Conversion and Management 2018; 160: 14-21. DOI: 10.1016/j.enconman.2018.01.032
  • Temizer İ, İlkılıç C. The performance and analysis of the thermoelectric generator system used in diesel engines. Renewable and Sustainable Energy Reviews 2016; 63: 141-151. DOI: 10.1016/j.rser.2016.04.068
  • Topalcı Ü, Gürbüz H, Akçay H, Demirtürk S. Buji ateşlemeli bir motorda egzoz atık ısı geri kazanımı için termoelektrik jeneratör modelinin geliştirilmesi. Mühendislik Bilimleri ve Tasarım Dergisi 2020; 8: 582-596. DOI: 10.21923/jesd.703886
  • Kunt MA, Güneş H. Comparing the recovery performance of different thermoelectric generator modules in an exhaust system of a diesel engine both experimentally and theoretically. Proceedings of The Institution of Mechanical Engineers Part D-Journal of Automobile Engineering 2020; 234: 183-190. DOI:10.1177/0954407019837786
  • Kim TY, Negash AA, Cho G. Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules. Energy Conversion and Management 2016; 124: 280-286. DOI: 10.1016/j.enconman.2016.07.013
  • Muralidhar N, Himabindu H, Ravikrishna RV. Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a Thermoelectric Generator. Energy 2018; DOI: 10.1016/j.energy.2018.02.023
  • Gürcan A. Farklı boyutlarda termoelektrik jeneratör kullanılarak egzoz ısı enerjisinin geri kazanımı. Yüksek Lisans Tezi. Denizli: Pamukkale Üniversitesi; 2019.
  • Potur RA. Faz IIIB emisyon standardına cevap veren dizel traktör motorunun tasarımı için gerçek çevrimin matematik modellenmesi ve optimum yanma kanununun belirlenmesi. Yüksek Lisans Tezi. İstanbul: İstanbul Teknik Üniversitesi; 2009.
  • Lee HS. Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. Wiley, Hoboken; 2010.
  • Lee HS. Thermoelectrics: Design and Materials. Wiley, Chichester; 2017.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Ali Gürcan 0000-0002-2745-1413

Gülay Yakar 0000-0002-1865-7815

Publication Date December 31, 2021
Submission Date July 26, 2021
Published in Issue Year 2021 Volume: 8 Issue: 15

Cite

APA Gürcan, A., & Yakar, G. (2021). BİR TERMOELEKTRİK JENERATÖR SİSTEMİNİN ISI ALICISININ ISIL PERFORMANSINA FARKLI DIŞ ORTAM SICAKLIKLARININ ETKİSİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8(15), 391-413. https://doi.org/10.54365/adyumbd.974337
AMA Gürcan A, Yakar G. BİR TERMOELEKTRİK JENERATÖR SİSTEMİNİN ISI ALICISININ ISIL PERFORMANSINA FARKLI DIŞ ORTAM SICAKLIKLARININ ETKİSİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. December 2021;8(15):391-413. doi:10.54365/adyumbd.974337
Chicago Gürcan, Ali, and Gülay Yakar. “BİR TERMOELEKTRİK JENERATÖR SİSTEMİNİN ISI ALICISININ ISIL PERFORMANSINA FARKLI DIŞ ORTAM SICAKLIKLARININ ETKİSİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 15 (December 2021): 391-413. https://doi.org/10.54365/adyumbd.974337.
EndNote Gürcan A, Yakar G (December 1, 2021) BİR TERMOELEKTRİK JENERATÖR SİSTEMİNİN ISI ALICISININ ISIL PERFORMANSINA FARKLI DIŞ ORTAM SICAKLIKLARININ ETKİSİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8 15 391–413.
IEEE A. Gürcan and G. Yakar, “BİR TERMOELEKTRİK JENERATÖR SİSTEMİNİN ISI ALICISININ ISIL PERFORMANSINA FARKLI DIŞ ORTAM SICAKLIKLARININ ETKİSİ”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 15, pp. 391–413, 2021, doi: 10.54365/adyumbd.974337.
ISNAD Gürcan, Ali - Yakar, Gülay. “BİR TERMOELEKTRİK JENERATÖR SİSTEMİNİN ISI ALICISININ ISIL PERFORMANSINA FARKLI DIŞ ORTAM SICAKLIKLARININ ETKİSİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8/15 (December 2021), 391-413. https://doi.org/10.54365/adyumbd.974337.
JAMA Gürcan A, Yakar G. BİR TERMOELEKTRİK JENERATÖR SİSTEMİNİN ISI ALICISININ ISIL PERFORMANSINA FARKLI DIŞ ORTAM SICAKLIKLARININ ETKİSİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2021;8:391–413.
MLA Gürcan, Ali and Gülay Yakar. “BİR TERMOELEKTRİK JENERATÖR SİSTEMİNİN ISI ALICISININ ISIL PERFORMANSINA FARKLI DIŞ ORTAM SICAKLIKLARININ ETKİSİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 15, 2021, pp. 391-13, doi:10.54365/adyumbd.974337.
Vancouver Gürcan A, Yakar G. BİR TERMOELEKTRİK JENERATÖR SİSTEMİNİN ISI ALICISININ ISIL PERFORMANSINA FARKLI DIŞ ORTAM SICAKLIKLARININ ETKİSİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2021;8(15):391-413.