Research Article
BibTex RIS Cite

YÜKSEK ENERJİLİ ÖĞÜTME İLE ÜRETİLEN Al2O3 TAKVİYELİ CU KOMPOZİTLERDE PARÇACIK BOYUTUNUN ETKİSİ

Year 2023, Volume: 10 Issue: 20, 125 - 134, 31.08.2023
https://doi.org/10.54365/adyumbd.1287821

Abstract

Farklı tane boyutuna sahip alüminyum oksit (Al2O3) parçacıklarıyla güçlendirilerek, mekanik alaşımlandırılmış bakır (Cu) matris malzemeler yüksek enerjili öğütme işlemi ile başarılı bir şekilde üretilmiştir. Başlangıç malzemeleri, 10 µm ve 1 µm arasında değişen parçacık boyutlarına sahip ağırlıkça % 0,5 ticari Al2O3 tozları ve inert gaz atomize küresel elektrolitik Cu tozlarından oluşmaktadır. Farklı tane boyutlarına sahip Al2O3 ve Cu tozları, Cu matrisinde homojen bir Al2O3 dağılımı elde etmek için 500 rpm'de 3 saat boyunca yüksek enerjili öğütme işlemine tabi tutulmuştur. Öğütülen tozlar daha sonra 500 MPa basınçta soğuk preslenmiş ve 880°C'de 1,5 saat süreyle izotermal koşullar altında argon atmosferinde sinterlenmiştir. Üretilen bakır kompozit malzemeler, X-ışını kırınım analizleri (XRD), yüksek alan emisyon taramalı elektron mikroskopu (FEG-SEM), enerji dağılımlı X-ışını spektroskopisi (EDS), yoğunluk ve makro-sertlik testleri kullanılarak karakterize edilmiştir. Aşınma özelliklerini araştırmak için disk üstünde pim tribometre kullanılarak tribolojik testleri yapılmıştır. Deneysel sonuçlar, ince dağılmış Al2O3 partiküllerinin Cu matrisine dâhil edilmesinin, kaba Al2O3 partiküllerinden daha önemli bir güçlendirme etkisine sahip olduğunu göstermiştir.

References

  • Nadkarani A. ASM Specialty Handbook: Copper and Copper Alloys. vol. 7. J.R. Davis: ASM International; 1950.
  • Lee WD, Ha HG, Kim KB. Synthesis of Cu–Al2O3 nano composite powder. Scripta Materialia 2001; 44: 2137-2140.
  • Valdiviez R, Schrage D, Martinez F, Clark W. The use of dispersion strengthened copper in accelerator design. In: Proceedings of the 20th International Linac Conference, Monterey (CA), U.S.A; 2000.
  • Motta SM, Jena KP, Brocchi AE, Solorzano GI. Characterization of Cu–Al2O3 nano-scale composites synthesized by in situ reduction. Materials Science and Engineering: C 2001; 15; 175–177.
  • Zhan Y, Zhang G. The effect of interfacial modifying on the mechanical and wear properties of SiCp/Cu composites. Materials Letters 2003; 57: 4583 – 4586.
  • Tjong SC, Lau KC. Tribological behaviour of SiC particle-reinforced copper matrix composites. Materials Letters 2000; 43: 274 – 279.
  • Rajkovic V, Bozˇic AD, Devecˇerski K, Bojanic S, Jovanovic MT. Strength and thermal stability of Cu-Al2O3 composite obtained by internal oxidation. Revista De Metalurgia 2010; 46: 520–525.
  • Korac M, Kamberovic Z, Andic Z, Filippovic M, Tasic M. Sintered materials based on alumina and copper powders synthesized by a novel method. Science of Sintering 2010; 42: 81–90.
  • Korac M, Kamberovic Z, Tasic M, Gavrillovski M. Nanocomposite powders for new contact materials based on copper and alumina. The Chemical Industry & Chemical Engineering Quarterly 2008; 14: 215–218.
  • Şahin Y, Öksüz KE. Effects of Al2O3 nanopowders on the wear behavior of NiTi shape memory alloys. The Journal of The Minerals, Metals & Materials Society (TMS) 2014; 66: 61–65.
  • Korac M, Kamberovic Ž, Andic Z, Tasic M, Vujovic A. The analysis of the tribological properties of multiple strengthened of the nanocomposite of the Cu-Al2O3 system. Association of Metallurgical Engineers of Serbia AMES 2011; 17: 49 – 54.
  • Nasiri H, Vahdati KJ, Zebarjad SM. One-step fabrication of Cu-Al2O3 nanocomposite via solution combustion synthesis route. Journal of Alloys and Compounds 2011; 509: 5305– 5308.
  • Hwang SJ. Compressive yield strength of the nano-crystalline Cu with Al2O3 dispersed. Journal of Alloys and Compounds 2011; 509: 2355–2359.
  • Lee DW, Kim B.K. Nanostructured Cu–Al2O3 composite produced by thermochemical process for electrode application. Materials Letters 2004; 58, 3–4: 378-383.
  • Hemanth J. Development and property evaluation of aluminum alloy reinforced with nano-ZrO2 metal matrix nanocomposites (NMMCs). Materials Science and Engineering: A 2009; 507, 1-2: 110-113.
  • Marija K, Zoran A, Miloš T, Željko K. Sintering of Cu-Al2O3 nano-composite powders produced by a thermochemical route. Journal of the Serbian Chemical Society 2007; 72, 11: 1115-1125.
  • Öksüz KE, Şahin Y. Microstructure and hardness characteristics of Al2O3-B4C Particle-reinforced Cu matrix composites. Acta Physica Polonica A 2016; 129: 650-652.
  • Akbarpour MR, Salahi E, Hesari FA, Simchi A, Kim HS. Microstructure and compressibility of SiC nanoparticles reinforced Cu nanocomposite powders processed by high energy mechanical milling. Ceramics International 2014; 40 (1): 951–960.
  • Jena PK, Brocchi EA, Motta MS. Identification of a third phase in Cu-Al2O3 nanocomposites prepared by chemical routes. Materials Science and Engineering A 2004; 371: 72 – 78.
  • Shehata F, Fathy A, Abdelhameed M, Moustafa S. Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing. Materials & Design 2009; 30: 2756 – 2762.
  • Zhang Z, Chen LD. Consideration of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scripta Materialia 2006; 54: 1321-1326.
  • Shehata F, Abdelhameed M, Fathy A, Elmahdy M. Preparation and characteristics of Cu-Al2O3 nanocomposite. Open Journal of Metal 2011; 1: 25–33.
  • Lee DW, Kim BK. Nanocomposite powders new contact materials based on copper and alumina. Materials Letters 2004; 58: 378 – 383.
  • Şahin Y, Öksüz KE. Tribological behavior of Al2O3 and B4C particle-reinforced copper matrix investigated by the Taguchi method. Materials Testing 2016; 58 (5): 453-461.

Al2O3 PARTICLE SIZE EFFECT ON REINFORCED CU COMPOSITES PRODUCED BY HIGH ENERGY MILLING

Year 2023, Volume: 10 Issue: 20, 125 - 134, 31.08.2023
https://doi.org/10.54365/adyumbd.1287821

Abstract

Production of copper (Cu) composites with a reinforced Cu matrix using mechanical alloying with Aluminum oxide (Al2O3) particles of different sizes was achieved using high-energy ball milling procedure. The initial materials consisted of inert gas-atomized spherical electrolytic Cu powders containing 0.5 wt. % commercial Al2O3 powders, with particle sizes ranging from 10 µm to 1 µm. Cu powders with different particle sizes of Al2O3 were high-energy ball milled at 500 rpm for 3 hours to attain a consistent distribution of Al2O3 throughout in the Cu matrix. The powders that were high-energy ball milled were then subjected to cold-pressing at 500 MPa and isothermally sintered for 1.5 hours at 880°C in an Ar atmosphere. The fabricated copper composite materials were characterized using X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDXS), density and macrohardness tests. The wear properties and mechanism were investigated through tribological pin-on-disc experiments, which revealed that the reinforcing effect was more significant when finely dispersed Al2O3 particles were combined into the Cu matrix compared to coarse Al2O3 particles.

References

  • Nadkarani A. ASM Specialty Handbook: Copper and Copper Alloys. vol. 7. J.R. Davis: ASM International; 1950.
  • Lee WD, Ha HG, Kim KB. Synthesis of Cu–Al2O3 nano composite powder. Scripta Materialia 2001; 44: 2137-2140.
  • Valdiviez R, Schrage D, Martinez F, Clark W. The use of dispersion strengthened copper in accelerator design. In: Proceedings of the 20th International Linac Conference, Monterey (CA), U.S.A; 2000.
  • Motta SM, Jena KP, Brocchi AE, Solorzano GI. Characterization of Cu–Al2O3 nano-scale composites synthesized by in situ reduction. Materials Science and Engineering: C 2001; 15; 175–177.
  • Zhan Y, Zhang G. The effect of interfacial modifying on the mechanical and wear properties of SiCp/Cu composites. Materials Letters 2003; 57: 4583 – 4586.
  • Tjong SC, Lau KC. Tribological behaviour of SiC particle-reinforced copper matrix composites. Materials Letters 2000; 43: 274 – 279.
  • Rajkovic V, Bozˇic AD, Devecˇerski K, Bojanic S, Jovanovic MT. Strength and thermal stability of Cu-Al2O3 composite obtained by internal oxidation. Revista De Metalurgia 2010; 46: 520–525.
  • Korac M, Kamberovic Z, Andic Z, Filippovic M, Tasic M. Sintered materials based on alumina and copper powders synthesized by a novel method. Science of Sintering 2010; 42: 81–90.
  • Korac M, Kamberovic Z, Tasic M, Gavrillovski M. Nanocomposite powders for new contact materials based on copper and alumina. The Chemical Industry & Chemical Engineering Quarterly 2008; 14: 215–218.
  • Şahin Y, Öksüz KE. Effects of Al2O3 nanopowders on the wear behavior of NiTi shape memory alloys. The Journal of The Minerals, Metals & Materials Society (TMS) 2014; 66: 61–65.
  • Korac M, Kamberovic Ž, Andic Z, Tasic M, Vujovic A. The analysis of the tribological properties of multiple strengthened of the nanocomposite of the Cu-Al2O3 system. Association of Metallurgical Engineers of Serbia AMES 2011; 17: 49 – 54.
  • Nasiri H, Vahdati KJ, Zebarjad SM. One-step fabrication of Cu-Al2O3 nanocomposite via solution combustion synthesis route. Journal of Alloys and Compounds 2011; 509: 5305– 5308.
  • Hwang SJ. Compressive yield strength of the nano-crystalline Cu with Al2O3 dispersed. Journal of Alloys and Compounds 2011; 509: 2355–2359.
  • Lee DW, Kim B.K. Nanostructured Cu–Al2O3 composite produced by thermochemical process for electrode application. Materials Letters 2004; 58, 3–4: 378-383.
  • Hemanth J. Development and property evaluation of aluminum alloy reinforced with nano-ZrO2 metal matrix nanocomposites (NMMCs). Materials Science and Engineering: A 2009; 507, 1-2: 110-113.
  • Marija K, Zoran A, Miloš T, Željko K. Sintering of Cu-Al2O3 nano-composite powders produced by a thermochemical route. Journal of the Serbian Chemical Society 2007; 72, 11: 1115-1125.
  • Öksüz KE, Şahin Y. Microstructure and hardness characteristics of Al2O3-B4C Particle-reinforced Cu matrix composites. Acta Physica Polonica A 2016; 129: 650-652.
  • Akbarpour MR, Salahi E, Hesari FA, Simchi A, Kim HS. Microstructure and compressibility of SiC nanoparticles reinforced Cu nanocomposite powders processed by high energy mechanical milling. Ceramics International 2014; 40 (1): 951–960.
  • Jena PK, Brocchi EA, Motta MS. Identification of a third phase in Cu-Al2O3 nanocomposites prepared by chemical routes. Materials Science and Engineering A 2004; 371: 72 – 78.
  • Shehata F, Fathy A, Abdelhameed M, Moustafa S. Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing. Materials & Design 2009; 30: 2756 – 2762.
  • Zhang Z, Chen LD. Consideration of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scripta Materialia 2006; 54: 1321-1326.
  • Shehata F, Abdelhameed M, Fathy A, Elmahdy M. Preparation and characteristics of Cu-Al2O3 nanocomposite. Open Journal of Metal 2011; 1: 25–33.
  • Lee DW, Kim BK. Nanocomposite powders new contact materials based on copper and alumina. Materials Letters 2004; 58: 378 – 383.
  • Şahin Y, Öksüz KE. Tribological behavior of Al2O3 and B4C particle-reinforced copper matrix investigated by the Taguchi method. Materials Testing 2016; 58 (5): 453-461.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Kerim Emre Öksüz 0000-0001-7424-5930

Publication Date August 31, 2023
Submission Date April 26, 2023
Published in Issue Year 2023 Volume: 10 Issue: 20

Cite

APA Öksüz, K. E. (2023). Al2O3 PARTICLE SIZE EFFECT ON REINFORCED CU COMPOSITES PRODUCED BY HIGH ENERGY MILLING. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 10(20), 125-134. https://doi.org/10.54365/adyumbd.1287821
AMA Öksüz KE. Al2O3 PARTICLE SIZE EFFECT ON REINFORCED CU COMPOSITES PRODUCED BY HIGH ENERGY MILLING. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. August 2023;10(20):125-134. doi:10.54365/adyumbd.1287821
Chicago Öksüz, Kerim Emre. “Al2O3 PARTICLE SIZE EFFECT ON REINFORCED CU COMPOSITES PRODUCED BY HIGH ENERGY MILLING”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 20 (August 2023): 125-34. https://doi.org/10.54365/adyumbd.1287821.
EndNote Öksüz KE (August 1, 2023) Al2O3 PARTICLE SIZE EFFECT ON REINFORCED CU COMPOSITES PRODUCED BY HIGH ENERGY MILLING. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10 20 125–134.
IEEE K. E. Öksüz, “Al2O3 PARTICLE SIZE EFFECT ON REINFORCED CU COMPOSITES PRODUCED BY HIGH ENERGY MILLING”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 20, pp. 125–134, 2023, doi: 10.54365/adyumbd.1287821.
ISNAD Öksüz, Kerim Emre. “Al2O3 PARTICLE SIZE EFFECT ON REINFORCED CU COMPOSITES PRODUCED BY HIGH ENERGY MILLING”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10/20 (August 2023), 125-134. https://doi.org/10.54365/adyumbd.1287821.
JAMA Öksüz KE. Al2O3 PARTICLE SIZE EFFECT ON REINFORCED CU COMPOSITES PRODUCED BY HIGH ENERGY MILLING. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2023;10:125–134.
MLA Öksüz, Kerim Emre. “Al2O3 PARTICLE SIZE EFFECT ON REINFORCED CU COMPOSITES PRODUCED BY HIGH ENERGY MILLING”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 20, 2023, pp. 125-34, doi:10.54365/adyumbd.1287821.
Vancouver Öksüz KE. Al2O3 PARTICLE SIZE EFFECT ON REINFORCED CU COMPOSITES PRODUCED BY HIGH ENERGY MILLING. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2023;10(20):125-34.