Research Article
BibTex RIS Cite

AN APPROACH ON IMPROVING THERMAL INSULATION EFFICIENCY OF LIGHTWEIGHT CONCRETE MASONRY BLOCK ELEMENTS WITH GEOTEXTILE FELT LAYER IN SUSTAINABLE BUILDINGS

Year 2023, Volume: 10 Issue: 21, 182 - 197, 31.12.2023
https://doi.org/10.54365/adyumbd.1279518

Abstract

It is frequently stated that there is an energy efficiency difference between the optimum energy use in the world and the actual energy use. In the construction industry, various building materials are produced and used to optimize energy efficiency in buildings. Among these building materials, the use of lightweight concrete blocks is quite common both in our country and in the world. The most important benefit of using such building materials in buildings is thermal insulation. In this context, further improvement of the insulation properties of lightweight concrete masonry blocks is considered as one of the current issues of scientific and industrial studies. In this study, the thermal performance of the masonry blocks was examined by adding different amounts of geotextile to a fixed block design in order to examine the optimum design criteria by improving the thermal insulation and heat resistance properties of lightweight concrete blocks produced and used for thermal insulation. For this purpose, a lightweight concrete block with 7 rows and 24 cells was accepted as a reference. Then, in the test specimens, where geotextile was placed in the gaps of 1 row (10 mm), 2 rows (22 mm), 3 rows (32 mm), and a 72 mm wide geotextile felt was placed in a single layer of the reference block product, According to the results of the study, as the thickness of the geotextile layer increases, the thermal resistance of the products increases and it reaches a more resistant form against heat transfer. In addition, it is important to apply a geotextile layer in the form of a single layer and in a form with a large equivalent thickness and a minimum thermal bridge in block designs that will improve thermal insulation performance.

References

  • Chel A, Geetanjali K. Renewable energy technologies for sustainable development of energy efficient building. Alexandria engineering journal 2018; 57: 655-669.
  • Gheni, AA, ElGawady ME, Myers JJ. Energy efficient masonry units using sustainable techniques. Insights and Innovations in Structural Engineering, Mechanics and Computation 2016; 1702-1707.
  • Suleymanova LA, Lesovik VS, Kara KA, Malyukova MV, Suleymanov KA. Energy-Efficient Concretesfor Green Construction. Research Journal of Applied Sciences 2014; 12: 1087-1090
  • Korjenic A,Petránek V, Zach J, Hroudová J. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy and Buildings 2011; 43: 2518–2523.
  • Nemanič V, Žumer M. New organic fiber-based core material for vacuum thermal insulation. Energy and Buildings 2015;90: 137-141.
  • Boafo FE, Kim JT, Chen Z. Configured cavity-core matrix for vacuum insulation panel: Concept, preparation and thermophysical properties. Energy and Buildings 2015; 97: 98–106.
  • Zhu L, Dai J, Bai G, Zhang F. Study on thermal properties of recycled aggregate concrete and recycled concrete blocks. Construction and Building Materials 2015; 94: 620-628.
  • Solomon AA, Hemalatha G. Characteristics of expanded polystyrene (EPS) and its impact on mechanical and thermal performance of insulated concrete form (ICF) system. Structures 2020; 23: 204-213.
  • Caruana C, Yousif C, Bacher P, Buhagiar S, Grima C. Determination of thermal characteristics of standard and improved hollow concrete blocks using different measurement techniques. Journal of building engineering 2017; 13: 336-346.
  • Sutcu M, del Coz Díaz JJ, Rabanal FPÁ, Gencel O, Akkurt S. Thermal performance optimization of hollow clay bricks made up of paper waste. Energy and Buildings; 2014: 75, 96-108.
  • Xu R, He T, Da Y, Liu Y, Li J, Chen C. Utilizing wood fiber produced with wood waste to reinforce autoclaved aerated concrete. Construction and Building Materials 2019; 208: 242-249.
  • Suleymanova LA, Pogorelova IA, Marushko MV. Theoretical basis of formation highly organized porous structure of aerated concrete. Materials Science Forum 2019; 945: 309-317.
  • Ahmed A. Sustainable construction using autoclaved aerated concrete (aircrete) blocks. Research and Development in Material Science 2017; 1(4). ISSN 2576-8840
  • Gorshkov AS, Rymkevich PP, Vatin NI. Simulation of non-stationary heat transfer processes in autoclaved aerated concrete-walls. Magazine of Civil Engineering 2014; (8): 38-48.
  • Urban B, Engelmann P, Kossecka E, Kosny J. Arranging insulation for better thermal resistance in concrete and masonry wall systems. In 9th Nordic Symposium on Building Physics, Tampere, Finland; 2011.
  • Kosny J, Christian JE. The optimum use of insulation for concrete masonry block foundations. Building Research Journal 1993; 2.
  • Sakthivel S, Kumar SS, Melese B. Sound-absorbing recycled cotton/polyester thermal bonded nonwovens, The Journal of The Textile Institute 2021; 112: 1588-1595.
  • Bradley W, Greer DS., Nonwoven fabric composites from coir fibers. Patent US 2013/0260631 A1 13/899,417, 2013.
  • Moghadam A, Yousefi SH, Tafreshi HV, Pourdeyhimi B. Characterizing nonwoven materials via realistic microstructural modeling. Separation and Purification Technology 2019; 211: 602-609.
  • Rebolledo P, Cloutier A, Yemele MC. Effect of density and fiber size on porosity and thermal conductivity of fiberboard mats. Fibers 2018; 6: 81.
  • Santhanam S, Temesgen S, Atalie D, Ashagre G. Recycling of cotton and polyester fibers to produce nonwoven fabric for functional sound absorption material. Journal of Natural Fibers 2019; 16: 300-306.
  • PUNTEKS. http://www.punteks.com/urunler-izogreenkece.aspx (Erişim Tarihi: 06.04.2023
  • PAnetti-HB. https://www.panetti.com.tr/urunlerimiz/panetti-hb-seri/ (Erişim Tarihi: 06.04.2023)
  • Kâgir ve kâgir mamulleri - Isıl özelliklerinin tayini yöntemleri. Türk Standartları Enstitüsü, TS EN 1745, 2020.
  • Yapı bileşenleri ve yapı elemanları - Isıl direnç ve ısıl geçirgenlik-Hesaplama yöntemi, Türk Standartları Enstitüsü, TS EN ISO 6946, 2017.
  • Kosny J. Syed AM. Interactive Internet-based building envelope materials database for whole-building energy simulation programs. Proceedings of Thermal Performance of the Exterior Envelopes of Whole Buildings IX, Clearwater, Florida, 2004.

SÜRDÜREBİLİR YAPILARDA GEOTEKSTİL KEÇE KATMANLI HAFİF BETONDAN MAMUL KÂGİR BLOK ELEMANLARIN TERMAL YALITIM VERİMLİLİĞİNİN GELİŞTİRİLMESİ ÜZERİNE BİR YAKLAŞIM

Year 2023, Volume: 10 Issue: 21, 182 - 197, 31.12.2023
https://doi.org/10.54365/adyumbd.1279518

Abstract

Dünyadaki optimum enerji kullanımı ile gerçek enerji kullanımı arasında bir enerji verimliliği farkı olduğu sıklıkla belirtilmektedir. İnşaat sektöründe, binalarda enerji verimliliğini optimize etmek için çeşitli yapı malzemeleri üretilmekte ve kullanılmaktadır. Bu yapı malzemeleri arasında hafif beton blokların hem ülkemizde hem de dünyada kullanımı oldukça yaygındır. Bu tür yapı malzemelerinin binalarda kullanımının en önemli getirisi ısı yalıtımıdır. Bu bağlamda, hafif betonların yalıtım özelliklerinin daha da iyileştirilmesi bilimsel ve endüstriyel çalışmaların güncel konularından biri olarak değerlendirilmektedir. Bu çalışmada, ısı yalıtımı amacı ile üretilen ve kullanılan hafif beton blokların ısı yalıtım ve ısı direnç özelliklerinin iyileştirilerek optimum tasarım kriterlerinin incelenmesi amacıyla, sabit bir blok dizaynına farklı miktarda geotekstil eklenerek blokların ısıl performansları irdelenmiştir. Bu amaçla, dilinimli 7 sıra boşluklu ve 24 gözlü hafif beton blok referans olarak kabul edilmiştir. Daha sonra, referans blok ürününün 1 sıra (10 mm), 2 sıra (22 mm), 3 sıra (32 mm) boşluklarına geotekstil keçe konulmuş son test örneğinde isi 3 sıra boşluk ve enine harç hatılı kaldırılarak tek katmanda 72 mm genişliğinde geotekstil keçe konularak test örnekleri oluşturulmuştur. Çalışma sonuçlarına göre, geotekstil keçe katman kalınlığı arttıkça, ürünlerin termal direnci artmakta ve ısı transferine karşı daha dirençli bir forma ulaşmaktadır. Ayrıca, termal yalıtım performansı iyileştirilecek blok tasarımlarında tek katman şeklinde ve eşdeğer kalınlığı büyük, minimum ısı köprüsü oluşturan bir formda geotekstil keçe katmanı uygulanması önem arz etmektedir.

References

  • Chel A, Geetanjali K. Renewable energy technologies for sustainable development of energy efficient building. Alexandria engineering journal 2018; 57: 655-669.
  • Gheni, AA, ElGawady ME, Myers JJ. Energy efficient masonry units using sustainable techniques. Insights and Innovations in Structural Engineering, Mechanics and Computation 2016; 1702-1707.
  • Suleymanova LA, Lesovik VS, Kara KA, Malyukova MV, Suleymanov KA. Energy-Efficient Concretesfor Green Construction. Research Journal of Applied Sciences 2014; 12: 1087-1090
  • Korjenic A,Petránek V, Zach J, Hroudová J. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy and Buildings 2011; 43: 2518–2523.
  • Nemanič V, Žumer M. New organic fiber-based core material for vacuum thermal insulation. Energy and Buildings 2015;90: 137-141.
  • Boafo FE, Kim JT, Chen Z. Configured cavity-core matrix for vacuum insulation panel: Concept, preparation and thermophysical properties. Energy and Buildings 2015; 97: 98–106.
  • Zhu L, Dai J, Bai G, Zhang F. Study on thermal properties of recycled aggregate concrete and recycled concrete blocks. Construction and Building Materials 2015; 94: 620-628.
  • Solomon AA, Hemalatha G. Characteristics of expanded polystyrene (EPS) and its impact on mechanical and thermal performance of insulated concrete form (ICF) system. Structures 2020; 23: 204-213.
  • Caruana C, Yousif C, Bacher P, Buhagiar S, Grima C. Determination of thermal characteristics of standard and improved hollow concrete blocks using different measurement techniques. Journal of building engineering 2017; 13: 336-346.
  • Sutcu M, del Coz Díaz JJ, Rabanal FPÁ, Gencel O, Akkurt S. Thermal performance optimization of hollow clay bricks made up of paper waste. Energy and Buildings; 2014: 75, 96-108.
  • Xu R, He T, Da Y, Liu Y, Li J, Chen C. Utilizing wood fiber produced with wood waste to reinforce autoclaved aerated concrete. Construction and Building Materials 2019; 208: 242-249.
  • Suleymanova LA, Pogorelova IA, Marushko MV. Theoretical basis of formation highly organized porous structure of aerated concrete. Materials Science Forum 2019; 945: 309-317.
  • Ahmed A. Sustainable construction using autoclaved aerated concrete (aircrete) blocks. Research and Development in Material Science 2017; 1(4). ISSN 2576-8840
  • Gorshkov AS, Rymkevich PP, Vatin NI. Simulation of non-stationary heat transfer processes in autoclaved aerated concrete-walls. Magazine of Civil Engineering 2014; (8): 38-48.
  • Urban B, Engelmann P, Kossecka E, Kosny J. Arranging insulation for better thermal resistance in concrete and masonry wall systems. In 9th Nordic Symposium on Building Physics, Tampere, Finland; 2011.
  • Kosny J, Christian JE. The optimum use of insulation for concrete masonry block foundations. Building Research Journal 1993; 2.
  • Sakthivel S, Kumar SS, Melese B. Sound-absorbing recycled cotton/polyester thermal bonded nonwovens, The Journal of The Textile Institute 2021; 112: 1588-1595.
  • Bradley W, Greer DS., Nonwoven fabric composites from coir fibers. Patent US 2013/0260631 A1 13/899,417, 2013.
  • Moghadam A, Yousefi SH, Tafreshi HV, Pourdeyhimi B. Characterizing nonwoven materials via realistic microstructural modeling. Separation and Purification Technology 2019; 211: 602-609.
  • Rebolledo P, Cloutier A, Yemele MC. Effect of density and fiber size on porosity and thermal conductivity of fiberboard mats. Fibers 2018; 6: 81.
  • Santhanam S, Temesgen S, Atalie D, Ashagre G. Recycling of cotton and polyester fibers to produce nonwoven fabric for functional sound absorption material. Journal of Natural Fibers 2019; 16: 300-306.
  • PUNTEKS. http://www.punteks.com/urunler-izogreenkece.aspx (Erişim Tarihi: 06.04.2023
  • PAnetti-HB. https://www.panetti.com.tr/urunlerimiz/panetti-hb-seri/ (Erişim Tarihi: 06.04.2023)
  • Kâgir ve kâgir mamulleri - Isıl özelliklerinin tayini yöntemleri. Türk Standartları Enstitüsü, TS EN 1745, 2020.
  • Yapı bileşenleri ve yapı elemanları - Isıl direnç ve ısıl geçirgenlik-Hesaplama yöntemi, Türk Standartları Enstitüsü, TS EN ISO 6946, 2017.
  • Kosny J. Syed AM. Interactive Internet-based building envelope materials database for whole-building energy simulation programs. Proceedings of Thermal Performance of the Exterior Envelopes of Whole Buildings IX, Clearwater, Florida, 2004.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Construction Materials
Journal Section Makaleler
Authors

Lütfullah Gündüz 0000-0003-2487-467X

Şevket Onur Kalkan 0000-0003-0250-8134

Publication Date December 31, 2023
Submission Date April 8, 2023
Published in Issue Year 2023 Volume: 10 Issue: 21

Cite

APA Gündüz, L., & Kalkan, Ş. O. (2023). SÜRDÜREBİLİR YAPILARDA GEOTEKSTİL KEÇE KATMANLI HAFİF BETONDAN MAMUL KÂGİR BLOK ELEMANLARIN TERMAL YALITIM VERİMLİLİĞİNİN GELİŞTİRİLMESİ ÜZERİNE BİR YAKLAŞIM. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 10(21), 182-197. https://doi.org/10.54365/adyumbd.1279518
AMA Gündüz L, Kalkan ŞO. SÜRDÜREBİLİR YAPILARDA GEOTEKSTİL KEÇE KATMANLI HAFİF BETONDAN MAMUL KÂGİR BLOK ELEMANLARIN TERMAL YALITIM VERİMLİLİĞİNİN GELİŞTİRİLMESİ ÜZERİNE BİR YAKLAŞIM. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. December 2023;10(21):182-197. doi:10.54365/adyumbd.1279518
Chicago Gündüz, Lütfullah, and Şevket Onur Kalkan. “SÜRDÜREBİLİR YAPILARDA GEOTEKSTİL KEÇE KATMANLI HAFİF BETONDAN MAMUL KÂGİR BLOK ELEMANLARIN TERMAL YALITIM VERİMLİLİĞİNİN GELİŞTİRİLMESİ ÜZERİNE BİR YAKLAŞIM”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 21 (December 2023): 182-97. https://doi.org/10.54365/adyumbd.1279518.
EndNote Gündüz L, Kalkan ŞO (December 1, 2023) SÜRDÜREBİLİR YAPILARDA GEOTEKSTİL KEÇE KATMANLI HAFİF BETONDAN MAMUL KÂGİR BLOK ELEMANLARIN TERMAL YALITIM VERİMLİLİĞİNİN GELİŞTİRİLMESİ ÜZERİNE BİR YAKLAŞIM. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10 21 182–197.
IEEE L. Gündüz and Ş. O. Kalkan, “SÜRDÜREBİLİR YAPILARDA GEOTEKSTİL KEÇE KATMANLI HAFİF BETONDAN MAMUL KÂGİR BLOK ELEMANLARIN TERMAL YALITIM VERİMLİLİĞİNİN GELİŞTİRİLMESİ ÜZERİNE BİR YAKLAŞIM”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 21, pp. 182–197, 2023, doi: 10.54365/adyumbd.1279518.
ISNAD Gündüz, Lütfullah - Kalkan, Şevket Onur. “SÜRDÜREBİLİR YAPILARDA GEOTEKSTİL KEÇE KATMANLI HAFİF BETONDAN MAMUL KÂGİR BLOK ELEMANLARIN TERMAL YALITIM VERİMLİLİĞİNİN GELİŞTİRİLMESİ ÜZERİNE BİR YAKLAŞIM”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10/21 (December 2023), 182-197. https://doi.org/10.54365/adyumbd.1279518.
JAMA Gündüz L, Kalkan ŞO. SÜRDÜREBİLİR YAPILARDA GEOTEKSTİL KEÇE KATMANLI HAFİF BETONDAN MAMUL KÂGİR BLOK ELEMANLARIN TERMAL YALITIM VERİMLİLİĞİNİN GELİŞTİRİLMESİ ÜZERİNE BİR YAKLAŞIM. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2023;10:182–197.
MLA Gündüz, Lütfullah and Şevket Onur Kalkan. “SÜRDÜREBİLİR YAPILARDA GEOTEKSTİL KEÇE KATMANLI HAFİF BETONDAN MAMUL KÂGİR BLOK ELEMANLARIN TERMAL YALITIM VERİMLİLİĞİNİN GELİŞTİRİLMESİ ÜZERİNE BİR YAKLAŞIM”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 21, 2023, pp. 182-97, doi:10.54365/adyumbd.1279518.
Vancouver Gündüz L, Kalkan ŞO. SÜRDÜREBİLİR YAPILARDA GEOTEKSTİL KEÇE KATMANLI HAFİF BETONDAN MAMUL KÂGİR BLOK ELEMANLARIN TERMAL YALITIM VERİMLİLİĞİNİN GELİŞTİRİLMESİ ÜZERİNE BİR YAKLAŞIM. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2023;10(21):182-97.