UYARLAMALI AĞ TABANLI BULANIK ÇIKARIM SİSTEMİ KULLANARAK BİR MEKANİK JİROSKOPUN YALPALAMA KESTİRİMİ
Year 2023,
Volume: 10 Issue: 21, 198 - 209, 31.12.2023
İlyas Kacar
Abstract
Jiro-tork üretme kabiliyetleri nedeni ile mekanik jiroskoplar, hava ve uzay araçları gibi tamamen asılı veya tek, çift tekerlekli kara araçlarını dengelemek yön vermek için sıklıkla kullanılmaktadır. Jiro-tork yüksek hızda dönen volan ve onun üç eksen etrafında dönme hareketi yapabilmesine olanak tanıyan bir şasi sayesinde üretilmektedir. Jiro-torku kontrol etmek için yalpalama hızı uygulanmaktadır. Yalpalama hızına ilişkin zaman serisi verisi katı cisim dinamik analizi sayesinde elde edilmiştir. Veriye herhangi bir ön işlem uygulanmamıştır. Bu hızın açık çevrim kestirimi için uyarlamalı ağ tabanlı bulanık çıkarım sistemi (ANFIS) kullanılmıştır. Elde edilen modelde korelasyon değeri 0.99981 ve hata karesinin ortalamasının kökü 0.02467 rad/s olarak bulunmuştur. Model çıktıları ile veri seti arasında yüksek doğrusal bir ilişki mevcuttur. ANFIS ağının veriye herhangi bir ön işlem yapılması gereksinimini ortadan kaldırdığı da görülmüştür. Kullanılan ağ parametreleri ve bu ağ ile elde edilen kestirim performansı çalışmada sunulmuştur.
Thanks
Rijit dinamik simülasyonları için kullanılan Ansys®’in eğitsel amaçlı kullanım imkânını sağlayan Karadeniz Teknik Üniversitesi’ne, Dr. Mehmet Seyhan’a teşekkür ederim. Bu çalışmanın inceleme ve değerlendirme aşamasında yapmış oldukları değerli katkılardan dolayı; editör, hakem ve emeği geçenlere içten teşekkür ederim.
References
- Yalçın C, Sabah L. CBS tabanlı bulanık mantık ve ahp yöntemleri kullanılarak adıyaman İlçelerinin deprem tehlike analizinin oluşturulması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 2018; 5 (8): 101-113.
- Nikkhah A, Heydari P, Khaloozadeh H, Heydari AP. Gyroscope random drift modeling, using neural networks, fuzzy neural and traditional time-series methods. Journal of Aerospace and Technology 2009; 6(1):37-44.
- Wang X, Abtahi SM, Chahari M, Zhao T. An adaptive neuro-fuzzy model for attitude estimation and control of a 3 dof system. Mathematics 2022; 10 (6): 976. DOI: 10.3390/math10060976
- Niu Z, Cui Y. Research on fuzzy control of control moment gyro driven by traveling wave hollow ultrasonic motor. 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) 2017; 1-5.
- Xudong Y, Pengfei Z, Yuanping X, Xingwu L. Forecasting method for axial ring laser gyroscope drifts in single-axis rotation inertial navigation system. High Power Laser and Particle Beams 2013; 25 (04): 847-852. https://doi.org/10.3788/HPLPB20132504.0847.
- Kacar İ, Eroğlu MA, Yalçın MK, Design and development of an autonomous bicycle. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2021; 10 (1): 364-372. https://doi.org/10.28948/ngumuh.628580.
- Wikipedia®, Precession, Wikimedia Foundation, Inc.: https://en.wikipedia.org/wiki/Precession (11.08.2023).
- Ansys®, Academic research mechanical products, 2021 r2 help system, Ansys mechanical user's guide. ANSYS, Inc. 2023; 18-48.
- Clenois N., Gyroscope physics. Cleonis 2023; 1 (1):1.
- Tabari H, Kisi Ö, Ezani A., Talaee PH. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. Journal of Hydrology 2012; 444 (7): 78-89. https://doi.org/https://doi.org/10.1016/j.jhydrol.2012.04.007.
- Heris MK, Time-series prediction using ANFIS. The Yarpiz Project, Fuzzy Systems, 2015.
- Kacar İ, Korkmaz C, Prediction of agricultural drying using multi-layer perceptron network, long short-term memory network and regression methods. Gümüşhane University Journal of Science and Technology Institute 2022; 12 (4): 1188-1206. https://doi.org/10.17714/gumusfenbil.1110463
- Shi H, Hu S, Zhang J, LSTM based prediction algorithm and abnormal change detection for temperature in aerospace gyroscope shell. International Journal of Intelligent Computing and Cybernetics 2019; 12 (2):274-291. https://doi.org/10.1108/IJICC-11-2018-0152
- Wang JW, Deng ZH, Shen K, Virtual gyros construction and evaluation method based on BILSTM. IEEE Transactions on Instrumentation and Measurement 2022; 71: 1007710. https://doi.org/10.1109/TIM.2022.3212544.
PRECESSION FORECASTING OF A MECHANICAL GYROSCOPE USING ADAPTIVE NEURO FUZZY INFERENCE SYSTEM
Year 2023,
Volume: 10 Issue: 21, 198 - 209, 31.12.2023
İlyas Kacar
Abstract
Due to their ability to generate gyro-torque, mechanical gyroscopes are frequently used to balance or orientate fully suspended air or spacecraft or single or double-wheeled land vehicles. Gyro-torque is produced with a high-speed rotating flywheel and its chassis that allows it to rotate around three axes. The precession is applied to control the gyro-torque. The time series data on the precession was obtained by rigid body dynamic simulation. No pre-processing was applied to the data. An adaptive network based fuzzy inference system (ANFIS) is used for open loop prediction of the precession. In the model obtained, the correlation value was found to be 0.99981 and the root of the mean square of the error was 0.02467 rad/s. High linear relationship between the model outputs and the data set is found. It has also been seen that the ANFIS network eliminates the need for any pre-processing of the data. The network parameters used and the prediction performance obtained are presented.
References
- Yalçın C, Sabah L. CBS tabanlı bulanık mantık ve ahp yöntemleri kullanılarak adıyaman İlçelerinin deprem tehlike analizinin oluşturulması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 2018; 5 (8): 101-113.
- Nikkhah A, Heydari P, Khaloozadeh H, Heydari AP. Gyroscope random drift modeling, using neural networks, fuzzy neural and traditional time-series methods. Journal of Aerospace and Technology 2009; 6(1):37-44.
- Wang X, Abtahi SM, Chahari M, Zhao T. An adaptive neuro-fuzzy model for attitude estimation and control of a 3 dof system. Mathematics 2022; 10 (6): 976. DOI: 10.3390/math10060976
- Niu Z, Cui Y. Research on fuzzy control of control moment gyro driven by traveling wave hollow ultrasonic motor. 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) 2017; 1-5.
- Xudong Y, Pengfei Z, Yuanping X, Xingwu L. Forecasting method for axial ring laser gyroscope drifts in single-axis rotation inertial navigation system. High Power Laser and Particle Beams 2013; 25 (04): 847-852. https://doi.org/10.3788/HPLPB20132504.0847.
- Kacar İ, Eroğlu MA, Yalçın MK, Design and development of an autonomous bicycle. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2021; 10 (1): 364-372. https://doi.org/10.28948/ngumuh.628580.
- Wikipedia®, Precession, Wikimedia Foundation, Inc.: https://en.wikipedia.org/wiki/Precession (11.08.2023).
- Ansys®, Academic research mechanical products, 2021 r2 help system, Ansys mechanical user's guide. ANSYS, Inc. 2023; 18-48.
- Clenois N., Gyroscope physics. Cleonis 2023; 1 (1):1.
- Tabari H, Kisi Ö, Ezani A., Talaee PH. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. Journal of Hydrology 2012; 444 (7): 78-89. https://doi.org/https://doi.org/10.1016/j.jhydrol.2012.04.007.
- Heris MK, Time-series prediction using ANFIS. The Yarpiz Project, Fuzzy Systems, 2015.
- Kacar İ, Korkmaz C, Prediction of agricultural drying using multi-layer perceptron network, long short-term memory network and regression methods. Gümüşhane University Journal of Science and Technology Institute 2022; 12 (4): 1188-1206. https://doi.org/10.17714/gumusfenbil.1110463
- Shi H, Hu S, Zhang J, LSTM based prediction algorithm and abnormal change detection for temperature in aerospace gyroscope shell. International Journal of Intelligent Computing and Cybernetics 2019; 12 (2):274-291. https://doi.org/10.1108/IJICC-11-2018-0152
- Wang JW, Deng ZH, Shen K, Virtual gyros construction and evaluation method based on BILSTM. IEEE Transactions on Instrumentation and Measurement 2022; 71: 1007710. https://doi.org/10.1109/TIM.2022.3212544.