Research Article
BibTex RIS Cite

Asidik Toprak Örneğindeki Titanyumun Elektrokimyasal Tekniklerle Korozyon Özelliklerinin Araştırılması

Year 2025, Volume: 12 Issue: 26, 187 - 197, 31.08.2025
https://doi.org/10.54365/adyumbd.1643873

Abstract

Dünya kara yüzeyinin %5 ila %8’inin kaplayan ve sulak alanların yaklaşık %60’ında bulunan asidik toprak türü örneği olan turba (torf) malzemelerin metallerdeki korozyonu çoğunlukla çeliklerde araştırılmıştır. Ancak, sürekli önemi artan titanyum esaslı malzemelerde oldukça sınırlıdır. Bu çalışmada, torf çözeltisindeki titanyumun korozyonu; açık devre potansiyeli, potansiyodinamik kutuplaşma ve Tafel ekstrapolasyonu yöntemleri kullanılarak elektrokimyasal korozyon davranışları açısından araştırılmıştır. Açık devre potansiyeli, titanyumun yüzeyinde koruyucu film oluşması nedeniyle korozyona karşı direnç sağladığını göstermiştir. Potansiyodinamik kutuplaşma, titanyumun çukurlaşma korozyonuna karşı dirençli olduğunu göstererek hidrojen evrim tepkimesi ve oksijen indirgeme tepkimesi varlığını düşündürmüştür. Tafel ekstrapolasyonuna göre korozyon hızı 7,14 x 10-7 mpy değerindedir. Bu, çeşitli titanyum alaşımlarının hidroklorik asit ve %3,5 sodyum klorür (NaCl) çözeltilerindeki korozyon hızlarına kıyasla çok düşük bir oran olduğundan torf çözeltisindeki titanyumun korozyona karşı daha dirençli olduğunu göstermiştir. Bu nedenle, yeraltı boru hatlarındaki ve ekskavatör kazıcılarındaki/kesicilerindeki çeliklerde turba korozyonuna karşı yeni bir yaklaşım olarak titanyumun ciddi vaat sunduğuna inanılmaktadır.

References

  • Sheetal, Kundu S, Thakur S, Singh AK, Singh M, Pani B, Saj VS. A Review of Electrochemical Techniques for Corrosion Monitoring – Fundamentals and Research Updates. Critical Reviews in Analytical Chemistry 2025;55(1):161-186.
  • Solovyeva VA, Almuhammadi KH, Badeghaish WO. Current Downhole Corrosion Control Solutions and Trends in the Oil and Gas Industry: A Review. Materials. 2023; 16(5):1795.
  • Azoor RM, Deo RN, Birbilis N, Kodikara J. On the optimum soil moisture for underground corrosion in different soil types. Corrosion Science 2019;159:108116.
  • Liu W, Bi W, Hu Y, Lu W, Feng W, Wang Y, Li Y, Liu J. Influence of initial pH and sulfate-reducing bacteria concentration on the microbiologically influenced corrosion of buried pipeline steel. Materials and Corrosion 2024;75(9):1193-1203.
  • Liu H, Dai Y, Cheng YF. Corrosion of underground pipelines in clay soil with varied soil layer thicknesses and aerations. Arabian Journal of Chemistry 2020;13(2):3601-3614.
  • Petersen RB, Wells T, Melchers RE. Development of long-term localised corrosion of cast iron pipes in backfill soils based on time of wetness. Corrosion Engineering, Science and Technology 2020;55(7):550-561.
  • Zhao Z, Chen M, Fan H, Zhang N. Data Analysis and Knowledge Mining of Machine Learning in Soil Corrosion Factors of the Pipeline Safety. Computational Intelligence and Neuroscience 2022;2022:9523878.
  • Yin Z, Wang S, Zhu Z, Gu S, Ma S, Du Y, Jiang S. Key parameters of soil corrosivity and a model for predicting the corrosion rate of Q235 steel in Beijing. Chinese Journal of Engineering 2023;45(11):1939-1947.
  • Contreras A, Quej LM, Sosa E, Liu HB, Alamilla JL. Corrosion rate of low carbon steels in function of physicochemical properties of soils. MRS Advances 2021;6:825-829.
  • Akkouche R, Rémazeilles C, Jeannin M, Barbalat M, Refait P. Corrosion of carbon steel in artificial soil: Processes occurring during wet/dry transitions studied with a multi-coupon electrode. Electrochimica Acta 2023;462:142745.
  • Jones LJN, Kong D, Tan BT, Rassiah P. Non-Revenue Water in Malaysia: Influence of Water Distribution Pipe Types. Sustainability 2021;13(4):2310.
  • Erensoy A, Mulayim S, Orhan A, Çek N, Tuna A, Ak N. The system design of the peat-based microbial fuel cell as a new renewable energy source: The potential and limitations. Alexandria Engineering Journal 2022;61(11):8743-8750.
  • Minasny B, Berglund Ö, Connoly J, Hedley C, de Vries F, Gimona A, Kempen B, Kidd D, Lilja H, Malone B, McBratney A, Roudier P, O'Rourke S, Rudiyanto, Padarian J, Poggio L, ten Caten A, Thompson D, Tuve C, Widyatmanti W. Digital mapping of peatlands – A critical review. Earth-Science Reviews 2019;196:102870.
  • Rezanezhad F, Price JS, Quinton WL, Lennartz B, Milojevic T, Cappellen PV. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology 2016;429: 75-84.
  • Kunarso A, Bonner MTL, Blanch EW, Grover S. Differences in Tropical Peat Soil Physical and Chemical Properties Under Different Land Uses: A Systematic Review and Meta-analysis. J Soil Sci Plant Nutr 2022;22:4063-4083.
  • Singh S, Kiran BR, Mohan V. Carbon farming: a circular framework to augment CO2 sinks and to combat climate change. Environ. Sci.: Adv. 2024;3:522-542.
  • Huat BBK, Kazemian S, Prasad A, Barghchi M. State of an art review of peat: General perspective. International Journal of the Physical Sciences 2011;6(8):1988-1996.
  • Greve MH, Christensen OF, Greve MB, Kheir RB. Change in Peat Coverage in Danish Cultivated Soils During the Past 35 Years. Soil Science 2014;179(5):250-257.
  • Lourenco M, Fitchett JM, Woodborne S. Peat definitions: A critical review. Progress in Physical Geography: Earth and Environment 2022;47(4):506-520.
  • Chadburn SE, Burke EJ, Gallego-Sala AV, Smith ND, Bret-Harte MS, Charman DJ, Drewer J, Edgar CW, Euskirchen ES, Fortuniak K, Gao Y, Nakhavali M, Pawlak W, Schuur EAG, Westermann S. A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme (JULES vn5.8_accumulate_soil) for northern and temperate peatlands. Geoscientific Model Development 2022;15(4): 1633-1657.
  • Ma L, Zhu G, Chen B., Zhang K, Niu S, Wang J, Ciais P, Zuo H. A globally robust relationship between water table decline, subsidence rate, and carbon release from peatlands. Commun Earth Environ 2022;3:254.
  • Leitch G. The Study of Corrosion and the Investigation of Peat Contamination in Steel. Master thesis, University of Strathclyde, United Kingdom, 2015.
  • Mikhailov AV, Korolyov IA, Lopatiuk AO. Corrosion Stability of Cutting Tool's Material for Exploitation of Peat Deposits. Procedia Engineering 2017;206:668-675.
  • Jafery KM, Embong Z, Othman NK, Yaakob N, Shah M, Hashim NZN. Initial stage of corrosion formation for X70 pipeline external surface in acidic soil (peat) environment. Materials Today: Proceedings 2022;51:1381-1387.
  • Orhan A, Çek N. Investigation of the Corrosion Behavior of Titanium Against Peat Corrosion. In: International Conference on Advanced Materials Science & Engineering and High Tech Devices Applications, Ankara, Türkiye, 2024.
  • Orhan A, Çek N. Turba Ortamında Titanyumun Korozyonunun Elektrokimyasal Empedans Spektroskopisi ile İncelenmesi. Fırat Üniversitesi Müh. Bil. Dergisi, 2025;37:467-474.
  • AbdElRhiem E, Barakat YF, Abdelaziz SM, Mostafa MM, Nada RH, Mohamed SG. Corrosion suppression and strengthening of the Al-10Zn alloy by adding silica nanorods. Sci Rep 2024;14:15644.
  • Quej Ake LM, Chacha Coto J, Vázquez Segovia BE, Zavala Ku AJ, Delgado Quej JA. Corrosion Rate Evaluations of Bent Steel Bars Immersed in Sand Soils Used in Concrete Reinforcement. Surf. Engin. Appl.Electrochem 2022;58:693-707.
  • Setiawan AR, Fausia PIU, Jannah M, Ramelan A. Unveiling the Combined Effects of Soil Acidity and Ammonium Sulfate on the Corrosion Behavior of X60 Steel Pipelines in Indonesian Regions. Trans Indian Inst Met 2025;78:30.
  • Ye H, Tu Z, Li S. Electrochemical performance of metal nitride coated titanium bipolar plate for proton exchange membrane water electrolyser. Journal of Power Sources 2024, 595, 234052.
  • Vrsalović L, Gudić S, Perčić N, Gojić M, Ivanić I, Kožuh S, Nagode A., Kosec B, Electrochemical behaviour of CuAlMn alloy in the presence of chloride and sulphate ions, Applied Surface Science Advances 2023;13:100380.
  • Talkhan AG, Benamor A, Nasser MS. Corrosion Study of Carbon Steel in CO2 Loaded AmineAmino Acid Solutions-Case of Mixtures of NMethyldiethanolamine and L-Arginine. IOP Conf. Ser.: Earth Environ. Sci. 2018;164:012028.
  • Medgyes B, Gharaibeh A, Harsányi G, Pécz B, Felhősi I. Electrochemical corrosion and electrochemical migration characteristics of SAC-1Bi-xMn solder alloys in NaCl solution. Corrosion Science 2023;213:110965.
  • Ryu JJ, Cudjoe E, Patel MV, Caputo M. Sliding Corrosion Fatigue of Metallic Joint Implants: A Comparative Study of CoCrMo and Ti6Al4V in Simulated Synovial Environments. Lubricants 2022;10(4):65.
  • Shi B, Xu J, Zou J, Li YR, Zhou Z, Liu K, Jia Q, Jiang HB. Advances in amelioration of plasma electrolytic oxidation coatings on biodegradable magnesium and alloys. Heliyon 2024;10(4): e24348.
  • Gnanavelbabu A, Vinothkumar E, Ross NS, Rai R, Kuntoğlu M. Investigating the influence of NaCl concentration on the electrochemical corrosion behavior of metal oxide reinforced magnesium matrix composites. Archiv.Civ.Mech.Eng 2023;23:113.
  • Tian J, Li C, Xian G. A layered superhydrophobic coating with excellent mechanical robustness and anti-corrosion performances. Journal of Materials Research and Technology 2022;21:4281-4298.
  • Liu X, Qin Y, Sun Y, Zheng Z, Zhang Y, Wang Z. Nickel-bipyridine-benzoic acid ternary complex: A new corrosion inhibitor for carbon steel in acidic medium. J Solid State Electrochem 2024;28:2283-2300.
  • Son I, Nakano H, Oue S, Kobayashi S, Fukushima H, Horita Z. Effect of Equal-Channel Angular Pressing on Pitting Corrosion of Pure Aluminum. International Journal of Corrosion 2012;2012: 450854.
  • Zhou H, Chhin D, Morel A, Gallant D, Mauzeroll J. Potentiodynamic polarization curves of AA7075 at high scan rates interpreted using the high field model. npj Mater Degrad 2022;6:20.
  • Wu H., Wang L, Wang Y, Tian H, Xin Y, Hou J, Cui Z. Comparative study of the corrosion behavior of base metal and welded joint of Ti-6Al-3Nb-2Zr-1Mo alloy in the acidic chloride environment. Corrosion Science 2025;244:112649.
  • Wang C-J, Kusdiyarto P, Li Y-H. Potentiodynamic polarization analysis with various corrosion inhibitors on A508/IN-182/IN-52M/308L/316L welds. Kuwait Journal of Science 202;51(2):100202.
  • Jayaraj J, Ranjith PM, Ningshen S, Ramanathan S. Studies on Corrosion of Titanium and Air-Oxidized Titanium in Fluorinated Nitric Acid. Trans Indian Inst Met, 2019;72:1917-1926.

Investigation of Corrosion Properties of Titanium in Acidic Soil Sample Using Electrochemical Techniques

Year 2025, Volume: 12 Issue: 26, 187 - 197, 31.08.2025
https://doi.org/10.54365/adyumbd.1643873

Abstract

The corrosion of peat (peat) materials, which is an example of an acidic soil type covering 5% to 8% of the world's land surface and found in approximately 60% of wetlands, has been mostly investigated in steels. However, it is quite limited in titanium-based materials, which are constantly gaining importance. In this study, the corrosion of titanium in peat solution was investigated in terms of electrochemical corrosion behavior using open circuit potential, potentiodynamic polarization and Tafel extrapolation methods. Open circuit potential showed that titanium resists corrosion due to the formation of a protective film on its surface. Potentiodynamic polarization showed that titanium is resistant to pitting corrosion, suggesting the presence of hydrogen evolution reaction and oxygen reduction reaction. According to Tafel extrapolation, the corrosion rate is 7.14 x 10-7 mpy. This is a very low rate compared to the corrosion rates of various titanium alloys in hydrochloric acid and 3.5% sodium chloride (NaCl) solutions, indicating that titanium in peat solution is more resistant to corrosion. Therefore, titanium is believed to offer serious promise as a new approach against peat corrosion in steels in underground pipelines and excavator diggers/cutters

References

  • Sheetal, Kundu S, Thakur S, Singh AK, Singh M, Pani B, Saj VS. A Review of Electrochemical Techniques for Corrosion Monitoring – Fundamentals and Research Updates. Critical Reviews in Analytical Chemistry 2025;55(1):161-186.
  • Solovyeva VA, Almuhammadi KH, Badeghaish WO. Current Downhole Corrosion Control Solutions and Trends in the Oil and Gas Industry: A Review. Materials. 2023; 16(5):1795.
  • Azoor RM, Deo RN, Birbilis N, Kodikara J. On the optimum soil moisture for underground corrosion in different soil types. Corrosion Science 2019;159:108116.
  • Liu W, Bi W, Hu Y, Lu W, Feng W, Wang Y, Li Y, Liu J. Influence of initial pH and sulfate-reducing bacteria concentration on the microbiologically influenced corrosion of buried pipeline steel. Materials and Corrosion 2024;75(9):1193-1203.
  • Liu H, Dai Y, Cheng YF. Corrosion of underground pipelines in clay soil with varied soil layer thicknesses and aerations. Arabian Journal of Chemistry 2020;13(2):3601-3614.
  • Petersen RB, Wells T, Melchers RE. Development of long-term localised corrosion of cast iron pipes in backfill soils based on time of wetness. Corrosion Engineering, Science and Technology 2020;55(7):550-561.
  • Zhao Z, Chen M, Fan H, Zhang N. Data Analysis and Knowledge Mining of Machine Learning in Soil Corrosion Factors of the Pipeline Safety. Computational Intelligence and Neuroscience 2022;2022:9523878.
  • Yin Z, Wang S, Zhu Z, Gu S, Ma S, Du Y, Jiang S. Key parameters of soil corrosivity and a model for predicting the corrosion rate of Q235 steel in Beijing. Chinese Journal of Engineering 2023;45(11):1939-1947.
  • Contreras A, Quej LM, Sosa E, Liu HB, Alamilla JL. Corrosion rate of low carbon steels in function of physicochemical properties of soils. MRS Advances 2021;6:825-829.
  • Akkouche R, Rémazeilles C, Jeannin M, Barbalat M, Refait P. Corrosion of carbon steel in artificial soil: Processes occurring during wet/dry transitions studied with a multi-coupon electrode. Electrochimica Acta 2023;462:142745.
  • Jones LJN, Kong D, Tan BT, Rassiah P. Non-Revenue Water in Malaysia: Influence of Water Distribution Pipe Types. Sustainability 2021;13(4):2310.
  • Erensoy A, Mulayim S, Orhan A, Çek N, Tuna A, Ak N. The system design of the peat-based microbial fuel cell as a new renewable energy source: The potential and limitations. Alexandria Engineering Journal 2022;61(11):8743-8750.
  • Minasny B, Berglund Ö, Connoly J, Hedley C, de Vries F, Gimona A, Kempen B, Kidd D, Lilja H, Malone B, McBratney A, Roudier P, O'Rourke S, Rudiyanto, Padarian J, Poggio L, ten Caten A, Thompson D, Tuve C, Widyatmanti W. Digital mapping of peatlands – A critical review. Earth-Science Reviews 2019;196:102870.
  • Rezanezhad F, Price JS, Quinton WL, Lennartz B, Milojevic T, Cappellen PV. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology 2016;429: 75-84.
  • Kunarso A, Bonner MTL, Blanch EW, Grover S. Differences in Tropical Peat Soil Physical and Chemical Properties Under Different Land Uses: A Systematic Review and Meta-analysis. J Soil Sci Plant Nutr 2022;22:4063-4083.
  • Singh S, Kiran BR, Mohan V. Carbon farming: a circular framework to augment CO2 sinks and to combat climate change. Environ. Sci.: Adv. 2024;3:522-542.
  • Huat BBK, Kazemian S, Prasad A, Barghchi M. State of an art review of peat: General perspective. International Journal of the Physical Sciences 2011;6(8):1988-1996.
  • Greve MH, Christensen OF, Greve MB, Kheir RB. Change in Peat Coverage in Danish Cultivated Soils During the Past 35 Years. Soil Science 2014;179(5):250-257.
  • Lourenco M, Fitchett JM, Woodborne S. Peat definitions: A critical review. Progress in Physical Geography: Earth and Environment 2022;47(4):506-520.
  • Chadburn SE, Burke EJ, Gallego-Sala AV, Smith ND, Bret-Harte MS, Charman DJ, Drewer J, Edgar CW, Euskirchen ES, Fortuniak K, Gao Y, Nakhavali M, Pawlak W, Schuur EAG, Westermann S. A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme (JULES vn5.8_accumulate_soil) for northern and temperate peatlands. Geoscientific Model Development 2022;15(4): 1633-1657.
  • Ma L, Zhu G, Chen B., Zhang K, Niu S, Wang J, Ciais P, Zuo H. A globally robust relationship between water table decline, subsidence rate, and carbon release from peatlands. Commun Earth Environ 2022;3:254.
  • Leitch G. The Study of Corrosion and the Investigation of Peat Contamination in Steel. Master thesis, University of Strathclyde, United Kingdom, 2015.
  • Mikhailov AV, Korolyov IA, Lopatiuk AO. Corrosion Stability of Cutting Tool's Material for Exploitation of Peat Deposits. Procedia Engineering 2017;206:668-675.
  • Jafery KM, Embong Z, Othman NK, Yaakob N, Shah M, Hashim NZN. Initial stage of corrosion formation for X70 pipeline external surface in acidic soil (peat) environment. Materials Today: Proceedings 2022;51:1381-1387.
  • Orhan A, Çek N. Investigation of the Corrosion Behavior of Titanium Against Peat Corrosion. In: International Conference on Advanced Materials Science & Engineering and High Tech Devices Applications, Ankara, Türkiye, 2024.
  • Orhan A, Çek N. Turba Ortamında Titanyumun Korozyonunun Elektrokimyasal Empedans Spektroskopisi ile İncelenmesi. Fırat Üniversitesi Müh. Bil. Dergisi, 2025;37:467-474.
  • AbdElRhiem E, Barakat YF, Abdelaziz SM, Mostafa MM, Nada RH, Mohamed SG. Corrosion suppression and strengthening of the Al-10Zn alloy by adding silica nanorods. Sci Rep 2024;14:15644.
  • Quej Ake LM, Chacha Coto J, Vázquez Segovia BE, Zavala Ku AJ, Delgado Quej JA. Corrosion Rate Evaluations of Bent Steel Bars Immersed in Sand Soils Used in Concrete Reinforcement. Surf. Engin. Appl.Electrochem 2022;58:693-707.
  • Setiawan AR, Fausia PIU, Jannah M, Ramelan A. Unveiling the Combined Effects of Soil Acidity and Ammonium Sulfate on the Corrosion Behavior of X60 Steel Pipelines in Indonesian Regions. Trans Indian Inst Met 2025;78:30.
  • Ye H, Tu Z, Li S. Electrochemical performance of metal nitride coated titanium bipolar plate for proton exchange membrane water electrolyser. Journal of Power Sources 2024, 595, 234052.
  • Vrsalović L, Gudić S, Perčić N, Gojić M, Ivanić I, Kožuh S, Nagode A., Kosec B, Electrochemical behaviour of CuAlMn alloy in the presence of chloride and sulphate ions, Applied Surface Science Advances 2023;13:100380.
  • Talkhan AG, Benamor A, Nasser MS. Corrosion Study of Carbon Steel in CO2 Loaded AmineAmino Acid Solutions-Case of Mixtures of NMethyldiethanolamine and L-Arginine. IOP Conf. Ser.: Earth Environ. Sci. 2018;164:012028.
  • Medgyes B, Gharaibeh A, Harsányi G, Pécz B, Felhősi I. Electrochemical corrosion and electrochemical migration characteristics of SAC-1Bi-xMn solder alloys in NaCl solution. Corrosion Science 2023;213:110965.
  • Ryu JJ, Cudjoe E, Patel MV, Caputo M. Sliding Corrosion Fatigue of Metallic Joint Implants: A Comparative Study of CoCrMo and Ti6Al4V in Simulated Synovial Environments. Lubricants 2022;10(4):65.
  • Shi B, Xu J, Zou J, Li YR, Zhou Z, Liu K, Jia Q, Jiang HB. Advances in amelioration of plasma electrolytic oxidation coatings on biodegradable magnesium and alloys. Heliyon 2024;10(4): e24348.
  • Gnanavelbabu A, Vinothkumar E, Ross NS, Rai R, Kuntoğlu M. Investigating the influence of NaCl concentration on the electrochemical corrosion behavior of metal oxide reinforced magnesium matrix composites. Archiv.Civ.Mech.Eng 2023;23:113.
  • Tian J, Li C, Xian G. A layered superhydrophobic coating with excellent mechanical robustness and anti-corrosion performances. Journal of Materials Research and Technology 2022;21:4281-4298.
  • Liu X, Qin Y, Sun Y, Zheng Z, Zhang Y, Wang Z. Nickel-bipyridine-benzoic acid ternary complex: A new corrosion inhibitor for carbon steel in acidic medium. J Solid State Electrochem 2024;28:2283-2300.
  • Son I, Nakano H, Oue S, Kobayashi S, Fukushima H, Horita Z. Effect of Equal-Channel Angular Pressing on Pitting Corrosion of Pure Aluminum. International Journal of Corrosion 2012;2012: 450854.
  • Zhou H, Chhin D, Morel A, Gallant D, Mauzeroll J. Potentiodynamic polarization curves of AA7075 at high scan rates interpreted using the high field model. npj Mater Degrad 2022;6:20.
  • Wu H., Wang L, Wang Y, Tian H, Xin Y, Hou J, Cui Z. Comparative study of the corrosion behavior of base metal and welded joint of Ti-6Al-3Nb-2Zr-1Mo alloy in the acidic chloride environment. Corrosion Science 2025;244:112649.
  • Wang C-J, Kusdiyarto P, Li Y-H. Potentiodynamic polarization analysis with various corrosion inhibitors on A508/IN-182/IN-52M/308L/316L welds. Kuwait Journal of Science 202;51(2):100202.
  • Jayaraj J, Ranjith PM, Ningshen S, Ramanathan S. Studies on Corrosion of Titanium and Air-Oxidized Titanium in Fluorinated Nitric Acid. Trans Indian Inst Met, 2019;72:1917-1926.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Metals and Alloy Materials, Materials Engineering (Other)
Journal Section Research Article
Authors

Ayhan Orhan 0000-0002-7648-2566

Nurettin Çek 0000-0001-6120-9228

Early Pub Date August 28, 2025
Publication Date August 31, 2025
Submission Date February 20, 2025
Acceptance Date June 30, 2025
Published in Issue Year 2025 Volume: 12 Issue: 26

Cite

APA Orhan, A., & Çek, N. (2025). Asidik Toprak Örneğindeki Titanyumun Elektrokimyasal Tekniklerle Korozyon Özelliklerinin Araştırılması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 12(26), 187-197. https://doi.org/10.54365/adyumbd.1643873
AMA Orhan A, Çek N. Asidik Toprak Örneğindeki Titanyumun Elektrokimyasal Tekniklerle Korozyon Özelliklerinin Araştırılması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. August 2025;12(26):187-197. doi:10.54365/adyumbd.1643873
Chicago Orhan, Ayhan, and Nurettin Çek. “Asidik Toprak Örneğindeki Titanyumun Elektrokimyasal Tekniklerle Korozyon Özelliklerinin Araştırılması”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 26 (August 2025): 187-97. https://doi.org/10.54365/adyumbd.1643873.
EndNote Orhan A, Çek N (August 1, 2025) Asidik Toprak Örneğindeki Titanyumun Elektrokimyasal Tekniklerle Korozyon Özelliklerinin Araştırılması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12 26 187–197.
IEEE A. Orhan and N. Çek, “Asidik Toprak Örneğindeki Titanyumun Elektrokimyasal Tekniklerle Korozyon Özelliklerinin Araştırılması”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 26, pp. 187–197, 2025, doi: 10.54365/adyumbd.1643873.
ISNAD Orhan, Ayhan - Çek, Nurettin. “Asidik Toprak Örneğindeki Titanyumun Elektrokimyasal Tekniklerle Korozyon Özelliklerinin Araştırılması”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 12/26 (August2025), 187-197. https://doi.org/10.54365/adyumbd.1643873.
JAMA Orhan A, Çek N. Asidik Toprak Örneğindeki Titanyumun Elektrokimyasal Tekniklerle Korozyon Özelliklerinin Araştırılması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2025;12:187–197.
MLA Orhan, Ayhan and Nurettin Çek. “Asidik Toprak Örneğindeki Titanyumun Elektrokimyasal Tekniklerle Korozyon Özelliklerinin Araştırılması”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 26, 2025, pp. 187-9, doi:10.54365/adyumbd.1643873.
Vancouver Orhan A, Çek N. Asidik Toprak Örneğindeki Titanyumun Elektrokimyasal Tekniklerle Korozyon Özelliklerinin Araştırılması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2025;12(26):187-9.