Research Article
BibTex RIS Cite

Reliability-Based Assessment of Girder-Damaged Bridges

Year 2023, Volume: 6 Issue: 2, 415 - 433, 01.07.2023
https://doi.org/10.35341/afet.1106622

Abstract

This study aims to develop a process management that enables the Structural Health Monitoring method, which can be adapted to any relevant structure, to detect aging or instantaneous changes in the structure, to provide immediate maintenance and repair of the structure when necessary and to extend its life. To this end, within the scope of the SmartEN project supported by the European Union Marie Curie Research Program, it is aimed to develop a general framework and process to combine the strengths of Life Cycle Management and Structural Health Monitoring methods and demonstrate their benefits. Structural system identification tools provide the ability to capture real modes and structural responses. However, these parameters are not meaningful for Lifecycle Management, these parameters need to be translated into reliability index to be converted into actionable data. Therefore, to find the reliability index or failure probability of the structural elements or the structure itself, it is necessary to define some kind of parameter or trend for the current serviceability limit or ultimate limit state function. In this research, the structural reliability evaluation of S101 post-tensioned reinforced concrete bridge girder located in Reibersdorf, Austria was investigated. In the pogressive-damaged test scenario; it is assumed that the loss in the amount of post-tensioned reinforcement will also lead to a reduction in the cross-sectional area of the tensile forces. Two separate reliability analysis cases were considered for the support and span of the S101 Bridge. The applied method included a nonlinear finite element structural model, a probability model for traffic load, and a resistance model related to the properties, dimensions and reinforcement placement of the damaged girder. Structural reliability was estimated in terms of reliability index using the first order reliability method. Bridge reliability was calculated for ultimate limit states.

Supporting Institution

AB Komisyonu SmartEN ITN Marie Curie programı

Project Number

Grant No. 238726

References

  • Augusti, G., & Baratta, A. (1972). Limit and shakedown analysis of structures with stochastic strengths variations.Journal of Structural Mechanics, 1(1), 43-62. https://doi.org/10.1080/03601217208905332
  • Breitung, K. (1984). Asymptotic approximations for multinormal integrals. Journal of Engineering Mechanics, 110(3), 357-366. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:3(357)
  • Catbas, F. N., & Frangopol, D. M. (2008). Concepts and issues of structural health monitoring for structural reliability and decision making. In World Forum on Smart Materials and Smart Structures Technology (pp. 470-470). CRC Press. https://doi.org/10.1201/9781439828441
  • Cornell, C. A. (1967). Bounds on the reliability of structural systems. Journal of the Structural Division, 93(1), 171-200.
  • Corotis, R. B., & Nafday, A. M. (1989). Structural system reliability using linear programming and simulation. Journal of Structural Engineering, 115(10), 2435-2447. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:10(2435)
  • Der Kiureghian, A., & Liu, P. L. (1986). Structural reliability under incomplete probability information. Journal of Engineering Mechanics, 112(1), 85-104. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:1(85)
  • Fiessler, B., Rackwitz, R., & Neumann, H. J. (1979). Quadratic limit states in structural reliability. Journal of the Engineering Mechanics Division, 105(4), 661-676.
  • Frangopol, D. M., Strauss, A., Kim, S. (2008).Bridge Reliability Assessment Based on Monitoring. Journal of Bridge Engineering, 13(3): 258-270.https://doi.org/10.1061/(ASCE)1084 0702(2008)13:3(258)
  • Frangopol, D. M. (2018). Structures and Infrastructure Systems: Life‐Cycle Performance, Management, and Optimization.Routledge.London. https://doi.org/10.1201/9781351182805
  • Hohenbichler, M., & Rackwitz, R. (1988). Improvement of second-order reliability estimates by importance sampling. Journal of Engineering Mechanics, 114(12), 2195-2199. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2195)
  • Honfi, D., Mårtensson, A., & Thelandersson, S. (2012). Reliability of beams according to Eurocodes in serviceability limit state. Engineering Structures, 35, 48-54. https://doi.org/10.1016/j.engstruct.2011.11.003
  • Kassem, M. M., Nazri, F. M., Farsangi, E. N., Öztürk, B. (2021). Improved vulnerability index methodology to quantify seismic risk and loss assessment in reinforced concrete buildings. Journal of Earthquake Engineering, 1(36), 6172-6207. https://doi.org/10.1080/13632469.2021.1911888
  • Kassem, M. M., Nazri, F. M., Farsangi, E. N., Öztürk, B. (2022). Development of a uniform seismic vulnerability index framework for reinforced concrete building typology. Journal of Building Engineering, 47 (2022), 103838. https://doi.org/10.1016/j.jobe.2021.103838
  • Kim, S., & Frangopol, D. M. (2018). Multi-objective probabilistic optimum monitoring planning considering fatigue damage detection, maintenance, reliability, service life and cost. Structural and Multidisciplinary Optimization, 57(1), 39-54. https://doi.org/10.1007/s00158-017-1849-3
  • Low, H. Y., Hao, H. (2002). Reliability analysis of direct shear and flexural failure modes of RC slabs under explosive loading. Engineering Structures, 24(2), 189-198. https://doi.org/10.1016/S0141-0296(01)00087-6
  • Messervey, T. B. (2008). Integration of structural health monitoring into the design, assessment and management of civil infrastructure. Doktora tezi, Fen Bilimleri Ensitiüsü, Lehigh Üniversitesi. Nowak, A.S. and Collins, K.R. (2000). Reliability of Structures. McGraw-Hill, New York.
  • Okasha N. M., Frangopol, D. M.(2012) Integration of structural health monitoring in a system performance based life-cycle bridge management framework. Structure and Infrastructure Engineering, 8(11), 999-1016. https://doi.org/10.1080/15732479.2010.485726
  • Ozer, E., & Feng, M. Q. (2019). Structural reliability estimation with participatory sensing and mobile cyber-physical structural health monitoring systems. Applied Sciences, 9(14), 2840. https://doi.org/10.3390/app9142840
  • Rackwitz, R., & Flessler, B. (1978). Structural reliability under combined random load sequences. Computers & Structures, 9(5), 489-494. https://doi.org/10.1016/0045-7949(78)90046-9
  • Siringoringo D. M., Fujino Y., Nagayama T.(2013).Dynamic Characteristics of an Overpass Bridge in a Full-Scale Destructive Test. Journal of Engineering Mechanics, 139(6), 691-701. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000280
  • Soares, R. C., Mohamed, A., Venturini, W. S., & Lemaire, M. (2002). Reliability analysis of non-linear reinforced concrete frames using the response surface method. Reliability Engineering & System Safety, 75(1), 1-16. https://doi.org/10.1016/S0951-8320(01)00043-6
  • Straub, D. (2014). Value of information analysis with structural reliability methods. Structural Safety, 49(2014), 75-85. https://doi.org/10.1016/j.strusafe.2013.08.006.
  • Thoft-Christensen, P. (1998). Assessment of the reliability profiles for concrete Bridges. Engineering Structures, 20(11), 1004-1009. https://doi.org/10.1016/S0141-0296(97)00196-X
  • Thoft-Christensen, P., & Baker, M. J. (2012). Structural reliability theory and its applications. Springer Science & Business Media, Berlin.
  • Val, D. V., Stewart, M. G., & Melchers, R. E. (1998). Effect of reinforcement corrosion on reliability of highway bridges. Engineering Structures, 20(11), 1010-1019. https://doi.org/10.1016/S0141-0296(97)00197-1
  • Vienna Consulting Engineers (VCE). (2009).Progressive damage testS101 Flyover Reibesdorf. Rep. No. 08/2308, VCE, Vienna, Austria.
  • Wong, S. M., Hobbs, R. E., & Onof, C. (2005). An adaptive response surface method for reliability analysis of structures with multiple loading sequences. Structural safety, 27(4), 287-308. https://doi.org/10.1016/j.strusafe.2005.02.001

Kirişi Hasarlı Köprülerin Yapısal Güvenilirliğe Dayalı Değerlendirmesi

Year 2023, Volume: 6 Issue: 2, 415 - 433, 01.07.2023
https://doi.org/10.35341/afet.1106622

Abstract

Bu çalışma ile amaç, ilgili her türlü yapıya uyarlanabilir Yapısal Sağlığı İzleme yönteminin, yapıdaki eskimeyi veya anlık değişiklikleri tespit ederek gerekli hallerde yapının bakım ve onarımını ivedilikle sağlayıp ömrünü uzatmasını sağlayan bir süreç yönetimi geliştirmektir. Bunun için Avrupa Birliği Marie Curie Araştırma Programı tarafından desteklenen SmartEN projesi kapsamında, Yaşam Döngüsü Yönetiminin ve Yapı Sağlığı İzleme yöntemlerinin güçlü yönlerini birleştirmek ve faydalarını göstermek için genel bir çerçeve ve süreç geliştirmek amaçlanmıştır. Yapısal sistem tanımlama araçları, gerçek modları ve yapısal tepkileri yakalama yeteneği sağlar. Ancak bu parametreler, Yaşam Döngüsü Yönetiminin için anlamlı değildir, bu parameterelerin eyleme geçirilebilir verilere dönüştürülmesi için güvenilirlik endeksine çevrilmesi gerekmektedir. Bu nedenle, yapısal elemanların veya yapının kendisinin güvenilirlik endeksini veya mevcut yapısal özelliklerinde değişiklik veya değişim nedeniyle yetersizlik olasılığını bulmak için mevcut hizmet verilebilirlik veya sınır limit durum fonksiyonu için bir tür parametre veya eğilimin tanımlanması gerekir. Bu araştırmada, Avusturya'nın Reibersdorf kentinde bulunan S101 ardgerilmeli betonarme köprü kirişinin güvenilirlik değerlendirmesi incelenmiştir. Aşamalı-hasarlı test senaryosunda; ardgerilmiş donatı miktarındaki kaybın, çekme kuvvetlerinin kesit alanında da bir azalmaya yol açacağı varsayılmaktadır. Mesnet ve açıklık hali için iki ayrı güvenilirlik analizi durumu göz önünde bulundurulmuştur. Uygulanan yöntem, doğrusal olmayan bir sonlu eleman yapısal modeli, trafik yükü için olasılık modeli ve hasarlı kirişin özellikleri, boyutları ve donatı yerleşimi ile ilgili dayanım modelini içermektedir. Güvenilirlik, birinci dereceden güvenilirlik yöntemi kullanılarak güvenilirlik endeksi cinsinden tahmin edilmiştir. Köprü güvenilirlikleri, nihai sınır durumları için hesaplanmıştır.

Project Number

Grant No. 238726

References

  • Augusti, G., & Baratta, A. (1972). Limit and shakedown analysis of structures with stochastic strengths variations.Journal of Structural Mechanics, 1(1), 43-62. https://doi.org/10.1080/03601217208905332
  • Breitung, K. (1984). Asymptotic approximations for multinormal integrals. Journal of Engineering Mechanics, 110(3), 357-366. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:3(357)
  • Catbas, F. N., & Frangopol, D. M. (2008). Concepts and issues of structural health monitoring for structural reliability and decision making. In World Forum on Smart Materials and Smart Structures Technology (pp. 470-470). CRC Press. https://doi.org/10.1201/9781439828441
  • Cornell, C. A. (1967). Bounds on the reliability of structural systems. Journal of the Structural Division, 93(1), 171-200.
  • Corotis, R. B., & Nafday, A. M. (1989). Structural system reliability using linear programming and simulation. Journal of Structural Engineering, 115(10), 2435-2447. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:10(2435)
  • Der Kiureghian, A., & Liu, P. L. (1986). Structural reliability under incomplete probability information. Journal of Engineering Mechanics, 112(1), 85-104. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:1(85)
  • Fiessler, B., Rackwitz, R., & Neumann, H. J. (1979). Quadratic limit states in structural reliability. Journal of the Engineering Mechanics Division, 105(4), 661-676.
  • Frangopol, D. M., Strauss, A., Kim, S. (2008).Bridge Reliability Assessment Based on Monitoring. Journal of Bridge Engineering, 13(3): 258-270.https://doi.org/10.1061/(ASCE)1084 0702(2008)13:3(258)
  • Frangopol, D. M. (2018). Structures and Infrastructure Systems: Life‐Cycle Performance, Management, and Optimization.Routledge.London. https://doi.org/10.1201/9781351182805
  • Hohenbichler, M., & Rackwitz, R. (1988). Improvement of second-order reliability estimates by importance sampling. Journal of Engineering Mechanics, 114(12), 2195-2199. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2195)
  • Honfi, D., Mårtensson, A., & Thelandersson, S. (2012). Reliability of beams according to Eurocodes in serviceability limit state. Engineering Structures, 35, 48-54. https://doi.org/10.1016/j.engstruct.2011.11.003
  • Kassem, M. M., Nazri, F. M., Farsangi, E. N., Öztürk, B. (2021). Improved vulnerability index methodology to quantify seismic risk and loss assessment in reinforced concrete buildings. Journal of Earthquake Engineering, 1(36), 6172-6207. https://doi.org/10.1080/13632469.2021.1911888
  • Kassem, M. M., Nazri, F. M., Farsangi, E. N., Öztürk, B. (2022). Development of a uniform seismic vulnerability index framework for reinforced concrete building typology. Journal of Building Engineering, 47 (2022), 103838. https://doi.org/10.1016/j.jobe.2021.103838
  • Kim, S., & Frangopol, D. M. (2018). Multi-objective probabilistic optimum monitoring planning considering fatigue damage detection, maintenance, reliability, service life and cost. Structural and Multidisciplinary Optimization, 57(1), 39-54. https://doi.org/10.1007/s00158-017-1849-3
  • Low, H. Y., Hao, H. (2002). Reliability analysis of direct shear and flexural failure modes of RC slabs under explosive loading. Engineering Structures, 24(2), 189-198. https://doi.org/10.1016/S0141-0296(01)00087-6
  • Messervey, T. B. (2008). Integration of structural health monitoring into the design, assessment and management of civil infrastructure. Doktora tezi, Fen Bilimleri Ensitiüsü, Lehigh Üniversitesi. Nowak, A.S. and Collins, K.R. (2000). Reliability of Structures. McGraw-Hill, New York.
  • Okasha N. M., Frangopol, D. M.(2012) Integration of structural health monitoring in a system performance based life-cycle bridge management framework. Structure and Infrastructure Engineering, 8(11), 999-1016. https://doi.org/10.1080/15732479.2010.485726
  • Ozer, E., & Feng, M. Q. (2019). Structural reliability estimation with participatory sensing and mobile cyber-physical structural health monitoring systems. Applied Sciences, 9(14), 2840. https://doi.org/10.3390/app9142840
  • Rackwitz, R., & Flessler, B. (1978). Structural reliability under combined random load sequences. Computers & Structures, 9(5), 489-494. https://doi.org/10.1016/0045-7949(78)90046-9
  • Siringoringo D. M., Fujino Y., Nagayama T.(2013).Dynamic Characteristics of an Overpass Bridge in a Full-Scale Destructive Test. Journal of Engineering Mechanics, 139(6), 691-701. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000280
  • Soares, R. C., Mohamed, A., Venturini, W. S., & Lemaire, M. (2002). Reliability analysis of non-linear reinforced concrete frames using the response surface method. Reliability Engineering & System Safety, 75(1), 1-16. https://doi.org/10.1016/S0951-8320(01)00043-6
  • Straub, D. (2014). Value of information analysis with structural reliability methods. Structural Safety, 49(2014), 75-85. https://doi.org/10.1016/j.strusafe.2013.08.006.
  • Thoft-Christensen, P. (1998). Assessment of the reliability profiles for concrete Bridges. Engineering Structures, 20(11), 1004-1009. https://doi.org/10.1016/S0141-0296(97)00196-X
  • Thoft-Christensen, P., & Baker, M. J. (2012). Structural reliability theory and its applications. Springer Science & Business Media, Berlin.
  • Val, D. V., Stewart, M. G., & Melchers, R. E. (1998). Effect of reinforcement corrosion on reliability of highway bridges. Engineering Structures, 20(11), 1010-1019. https://doi.org/10.1016/S0141-0296(97)00197-1
  • Vienna Consulting Engineers (VCE). (2009).Progressive damage testS101 Flyover Reibesdorf. Rep. No. 08/2308, VCE, Vienna, Austria.
  • Wong, S. M., Hobbs, R. E., & Onof, C. (2005). An adaptive response surface method for reliability analysis of structures with multiple loading sequences. Structural safety, 27(4), 287-308. https://doi.org/10.1016/j.strusafe.2005.02.001
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Umut Yıldırım 0000-0002-5919-1695

Project Number Grant No. 238726
Early Pub Date June 30, 2023
Publication Date July 1, 2023
Acceptance Date June 21, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Yıldırım, U. (2023). Kirişi Hasarlı Köprülerin Yapısal Güvenilirliğe Dayalı Değerlendirmesi. Afet Ve Risk Dergisi, 6(2), 415-433. https://doi.org/10.35341/afet.1106622
AMA Yıldırım U. Kirişi Hasarlı Köprülerin Yapısal Güvenilirliğe Dayalı Değerlendirmesi. Afet ve Risk Dergisi. July 2023;6(2):415-433. doi:10.35341/afet.1106622
Chicago Yıldırım, Umut. “Kirişi Hasarlı Köprülerin Yapısal Güvenilirliğe Dayalı Değerlendirmesi”. Afet Ve Risk Dergisi 6, no. 2 (July 2023): 415-33. https://doi.org/10.35341/afet.1106622.
EndNote Yıldırım U (July 1, 2023) Kirişi Hasarlı Köprülerin Yapısal Güvenilirliğe Dayalı Değerlendirmesi. Afet ve Risk Dergisi 6 2 415–433.
IEEE U. Yıldırım, “Kirişi Hasarlı Köprülerin Yapısal Güvenilirliğe Dayalı Değerlendirmesi”, Afet ve Risk Dergisi, vol. 6, no. 2, pp. 415–433, 2023, doi: 10.35341/afet.1106622.
ISNAD Yıldırım, Umut. “Kirişi Hasarlı Köprülerin Yapısal Güvenilirliğe Dayalı Değerlendirmesi”. Afet ve Risk Dergisi 6/2 (July 2023), 415-433. https://doi.org/10.35341/afet.1106622.
JAMA Yıldırım U. Kirişi Hasarlı Köprülerin Yapısal Güvenilirliğe Dayalı Değerlendirmesi. Afet ve Risk Dergisi. 2023;6:415–433.
MLA Yıldırım, Umut. “Kirişi Hasarlı Köprülerin Yapısal Güvenilirliğe Dayalı Değerlendirmesi”. Afet Ve Risk Dergisi, vol. 6, no. 2, 2023, pp. 415-33, doi:10.35341/afet.1106622.
Vancouver Yıldırım U. Kirişi Hasarlı Köprülerin Yapısal Güvenilirliğe Dayalı Değerlendirmesi. Afet ve Risk Dergisi. 2023;6(2):415-33.