Research Article
BibTex RIS Cite

Isıl işlemin Sedir (Cedrus libani) odununun elastik sabitleri üzerine etkileri

Year 2024, Volume: 5 Issue: 2, 72 - 78, 09.12.2024
https://doi.org/10.59751/agacorman.1483782

Abstract

Bu çalışmanın amacı ısıl işlemin Sedir (Cedrus libani) odununun elastik sabitleri üzerindeki etkilerinin araştırılma-sıdır. Sedir odunu örnekleri atmosferik basınç altında üç farklı sıcaklıkta (150, 180 ve 210 °C) ve üç farklı zaman seviyesinde (2, 5 ve 8 saat) ısıya maruz bırakılmıştır. Elastikiyet modülü (EL, ER, ET), kesme modülü (GLR, GLT, GRT) ve Poisson oranları (νLR, νLT, νRL, νRT, νTL, νTR) 20 x 20 x 60 mm numuneler üzerinde gerçekleştirilen basma testlerin-de çift eksenli ekstensometre kullanılarak belirlenmiştir. Test edilen numunelerin elastikiyet modülü, kesme modülü ve basma dirençleri ısıl işlemde sıcaklık ve zaman parametrelerinin önemli bir etkisi olduğu gözlemlenmiştir. Düşük sıcaklıklar ve kısa süreler için ısıl işlem, elastikiyet modülünde bir miktar artış sağlamış, ancak süre ve sıcaklığın artması, önemli ölçüde azalmaya neden olmuştur. Isıl işlem, kesme modülü üzerinde yıkıcı etkiye sahiptir. Poisson oranlarının ısıl işleme daha az duyarlı görülmüştür. Isıl işlem sedir odununun elastikiyet modülü, kayma modülü ve basma direncini önemli ölçüde değiştirmektedir.

References

  • Aira, J. R., Arriaga. F., Gonzalez, G. I. 2014. Determination of the elastic constants of Scots pine (Pinus sylvestris L.) wood by means of compression. Biosystems Engineering, 126, 12-22.
  • Akyurek, S., Akman, M., Ozalp, M. 2021. Effects of heat treat-ment on some chemical compound and mechanical properties of black pine wood. Wood Research, 66(4):621-629.
  • Altinok, M., Özalp, M., Korkut, S. 2010. The effects of heat treatment on some mechanical properties of laminated beech (Fagus orientalis L.) wood. Wood Research, 55(3): 131-142.
  • As, N., Koc, K.H., Dogu, A.D., Atik, C., Aksu, B., Erdinler, E.S. 2001. Anatomical, physical, mechanical and chemical properties of trees of industrial importance growing in Turkey. Journal of the Faculty of Forestry Istanbul University, 51(1): 71–88.
  • Aydın, T.Y. 2021. Evaluation of heating temperature and time on bending properties of Taurus cedar wood. Turkish Journal of Forestry, 22(4): 432-438.
  • Bal, B.C., Bektas, İ., Kaymakci, A. 2012. Some physical and mechanical properties of juvenile wood and mature wood of Taurus cedar. KSU Journal of Engineering Sciences, 15(2): 17–26.
  • Bal, B.C. 2013. Effects of heat treatment on the physical proper-ties of heartwood and sapwood of Cedrus libani. BioReources, 8(1): 211-219.
  • Bergander, A., Salmén, L. 2002. Cell wall properties and their effects on the mechanical properties of fibers. Journal of Mate-rials Science, 37: 151-156.
  • Boonstra, M., Blomberg, J. 2007. Semi-isostatic densification of heat-treated radiata pine. Wood Science and Technology, 41: 607-617.
  • Brandner, R., Gehri, E., Bogensperger, T., Schickhofer, G. 2007. Determination of modulus of shear and elasticity of glued lami-nated timber and related examinations. In: International Council for Research and Innovation in Building and Construction - Working Commission W18 - Timber Structures Meeting Forty. Germany.
  • Brunetti, M., de Capua, E. N., Macchioni, S. M. 2001. Natural durability, physical and mechanical properties of Atlas cedar (Cedrus atlantica Manetti) wood from Southern Italy. Annals of Forest Science, 58: 607–613.
  • Demetci, E. 1986. Studies on some physical and mechanical properties of Taurus cedar (Cedrus libani a. Rich.) wood. Forest-ry Research Institute Publications, Technical Bulletin Series, No: 180, Ankara.
  • Efe, F. 2021. A study on the determination of some physical and mechanical properties of wood of Taurus cedar. Turkish Journal of Agricultural and Natural Sciences, 8(1): 43–52.
  • Esteves, B., Pereira, H. 2008. Wood modification by heat treat-ment: a review. BioResources, 4 (1): 370-404.
  • Fajdiga, G., Zafosnik, B., Gospodaric, B., Straze, A. 2016. Com-pression test of thermally treated beech wood: Experimental and Numerical Analysis. BioResources, 11(1): 223-234.
  • Fengel J., Wegener, G. 2003. Wood: chemistry, ultrastructure, reaction. Verlag Kessel, Munchen Hering, S., Keunecke, D., Niemz, P. 2012. Moisture-dependent orthotropic elasticity of beech wood. Wood Science and Tech-nology, 45: 927-938.
  • Finnish Thermowood Association, 2003. ThermoWood Hand-book. Helsinki, Finland. https://asiakas.kotisivukone.com/files/en.thermowood.palvelee.fi/downloads/tw_handbook_080813.pdf (Accessed May 8, 2022).
  • Hillis, W.E. 1984. High-temperature and chemical effects on wood stability. Wood Science and Technology, 18: 281–293.
  • Jeong G.Y., Hindman, D.P., Zink-Sharp, A. 2010. Orthotropic properties of loblolly pine (Pinus taeda) strands. Journal of Material Science, (45):5820–5830.
  • Kocaefe, D., Poncsak, S., Dore, G., Younsi, R. 2008. Effect of heat treatment on the wettability of white ash and soft maple by water. Holz Roh Werkst, 66: 355–361.
  • Kol, H.S. 2010. Characteristics of heat-treated Turkish pine and fir wood after thermo wood processing. Journal of Environmen-tal Biology, 31(6): 1007-1011.
  • Korkut, S., Akgül, M., Dündar, T. 2008a. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresource Technology, 99: 1861-1868.
  • Korkut, S., Kök, M., Korkut, D., Gürleyen T. 2008b. The effects of heat treatment on technological properties in Red-bud maple (Acer trautvetteri Medw.) wood. Bioresource Technology, 99:1538-1543.
  • Kotilainen, R. 2000. Chemical changes in wood during heating at 150–260 °C. Ph.D. thesis, Jyvaskyla University. Research report 80, Finland.
  • Kubojima, Y., Okano, T., Ohta, M. 1998. Vibrational properties of Sitka spruce heat-treated in nitrogen gas. Journal of Wood Science, 44: 73-77.
  • Kuzman, M.K., Kutnar, A., Ayrilmis, N., Kariz, M. 2015. Effect of heat treatment on mechanical properties of selected wood joints. European Journal of Wood and Wood Products, 73: 689–691.
  • Mizutani, M., Ando, K. 2015. Influence of a wide range of moisture contents on the Poisson’s ratio of wood. Journal of Wood Science, 61: 81-85.
  • Ozyhar, T., Hering, S., Niemz, P. 2013a. Moisture-dependent orthotropic tension compression asymmetry of wood. Holzforschung, 67(4): 395–404.
  • Percin, O., Peker, H., Atilgan, A. 2016. The effect of heat treat-ment on some physical and mechanical properties of beech (Fagus orientalis Lipsky) wood. Wood Research, 61(3): 443-456.
  • Ross, R. J. 2010. Wood handbook: wood as an engineering material. General Technical Report (GTR). Forest Products La-boratory, Forest Service, USDA.
  • Taghiyari, H.R., Enayati, A., Gholamiyan, H. 2012. Effects of nano silver impregnation on brittleness, physical and mechanical properties of heat-treated hardwoods. Wood science and tech-nology, 47(3): 467-480.
  • Tufan, M.Z. 2016. Chemical and Physical Properties of Modi-fied Cedar Wood. Unpublished MSc. Thesis. Suleyman Demirel University, Graduate School of Natural and Applied Sciences. Isparta, Turkey.
  • Ünsal, O., Ayrilmis, N. 2005. Variations in compression strength and surface roughness of heat-treated Turkish river red gum. Journal of Wood Science, 51: 405-409.
  • Windeisen, E., Strobel, C., Wegener, G. 2007. Chemical changes during the production of thermo-treated beech wood. Wood Science and Technology, 41:523–536.
  • Windeisen, E., Bachle, H., Zimmer, B., Wegener, G. 2008. Rela-tions between chemical changes and mechanical properties of thermally treated wood. Holzforschung, 63(6): 773-778.
  • Xie, J., Chen, L., Shao, H., He, L., Jiang, Y., Lu, D., Xiao, H., Chen, Y., Huang, X., Hao, J., Tu, L., Lin, T., Xiao, Y., Chen, G., Qi, J. 2020. Changes in Physical-Mechanical Properties and Chemical Compositions of Toona Sinensis Wood Before and After Thermal Treatment. Wood Research, 65(6): 877-884.
  • Yang, T.H., Chang, F.R., Lin, C.J., Chang, F.C. 2016. Effects of Temperature and Duration of Heat Treatment on the Physical, Surface and Mechanical Properties of Japanese Cedar Wood. BioResources, 11(2): 3947-3963.
  • Yildiz, S., Gezer, E.D., Yildiz, U.C. 2006. Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment, 41(12): 1762-1766.

Effects of heat treatment on elastic constants of Cedar (Cedrus libani) wood

Year 2024, Volume: 5 Issue: 2, 72 - 78, 09.12.2024
https://doi.org/10.59751/agacorman.1483782

Abstract

The aim of this study was to evaluate the effects of heat treatment on the elastic constants of Cedar (Cedrus liba-ni) wood. Heat under atmospheric pressure at three different temperatures (150, 180 and 210 °C) and three differ-ent time levels (2, 5 and 8 hours) was applied to Cedar wood specimens and its Modulus of elasticity (EL, ER, ET) shear modulus (GLR, GLT, GRT) and Poisson’s ratios (νLR, νLT, νRL, νRT, νTL, νTR) were evaluated by compression tests conducted on 20 x 20 x 60 mm samples using bi-axial extensometer. It was observed that the modulus of elastici-ty, shear modulus, and compression strength of the tested specimens were significantly affected by the temperature and time parameters of the heat treatment. Treatment of heat for low temperatures and short periods yielded some increase in modulus of elasticity but an increase in time and temperature resulted in a significant decrease. Heat treatment has a devastating influence on the shear modulus. Poisson’s ratios were less sensitive to the heat treat-ment. Heat treatment significantly alters the modulus of elasticity, shear modulus and compression strength of Cedar wood.

References

  • Aira, J. R., Arriaga. F., Gonzalez, G. I. 2014. Determination of the elastic constants of Scots pine (Pinus sylvestris L.) wood by means of compression. Biosystems Engineering, 126, 12-22.
  • Akyurek, S., Akman, M., Ozalp, M. 2021. Effects of heat treat-ment on some chemical compound and mechanical properties of black pine wood. Wood Research, 66(4):621-629.
  • Altinok, M., Özalp, M., Korkut, S. 2010. The effects of heat treatment on some mechanical properties of laminated beech (Fagus orientalis L.) wood. Wood Research, 55(3): 131-142.
  • As, N., Koc, K.H., Dogu, A.D., Atik, C., Aksu, B., Erdinler, E.S. 2001. Anatomical, physical, mechanical and chemical properties of trees of industrial importance growing in Turkey. Journal of the Faculty of Forestry Istanbul University, 51(1): 71–88.
  • Aydın, T.Y. 2021. Evaluation of heating temperature and time on bending properties of Taurus cedar wood. Turkish Journal of Forestry, 22(4): 432-438.
  • Bal, B.C., Bektas, İ., Kaymakci, A. 2012. Some physical and mechanical properties of juvenile wood and mature wood of Taurus cedar. KSU Journal of Engineering Sciences, 15(2): 17–26.
  • Bal, B.C. 2013. Effects of heat treatment on the physical proper-ties of heartwood and sapwood of Cedrus libani. BioReources, 8(1): 211-219.
  • Bergander, A., Salmén, L. 2002. Cell wall properties and their effects on the mechanical properties of fibers. Journal of Mate-rials Science, 37: 151-156.
  • Boonstra, M., Blomberg, J. 2007. Semi-isostatic densification of heat-treated radiata pine. Wood Science and Technology, 41: 607-617.
  • Brandner, R., Gehri, E., Bogensperger, T., Schickhofer, G. 2007. Determination of modulus of shear and elasticity of glued lami-nated timber and related examinations. In: International Council for Research and Innovation in Building and Construction - Working Commission W18 - Timber Structures Meeting Forty. Germany.
  • Brunetti, M., de Capua, E. N., Macchioni, S. M. 2001. Natural durability, physical and mechanical properties of Atlas cedar (Cedrus atlantica Manetti) wood from Southern Italy. Annals of Forest Science, 58: 607–613.
  • Demetci, E. 1986. Studies on some physical and mechanical properties of Taurus cedar (Cedrus libani a. Rich.) wood. Forest-ry Research Institute Publications, Technical Bulletin Series, No: 180, Ankara.
  • Efe, F. 2021. A study on the determination of some physical and mechanical properties of wood of Taurus cedar. Turkish Journal of Agricultural and Natural Sciences, 8(1): 43–52.
  • Esteves, B., Pereira, H. 2008. Wood modification by heat treat-ment: a review. BioResources, 4 (1): 370-404.
  • Fajdiga, G., Zafosnik, B., Gospodaric, B., Straze, A. 2016. Com-pression test of thermally treated beech wood: Experimental and Numerical Analysis. BioResources, 11(1): 223-234.
  • Fengel J., Wegener, G. 2003. Wood: chemistry, ultrastructure, reaction. Verlag Kessel, Munchen Hering, S., Keunecke, D., Niemz, P. 2012. Moisture-dependent orthotropic elasticity of beech wood. Wood Science and Tech-nology, 45: 927-938.
  • Finnish Thermowood Association, 2003. ThermoWood Hand-book. Helsinki, Finland. https://asiakas.kotisivukone.com/files/en.thermowood.palvelee.fi/downloads/tw_handbook_080813.pdf (Accessed May 8, 2022).
  • Hillis, W.E. 1984. High-temperature and chemical effects on wood stability. Wood Science and Technology, 18: 281–293.
  • Jeong G.Y., Hindman, D.P., Zink-Sharp, A. 2010. Orthotropic properties of loblolly pine (Pinus taeda) strands. Journal of Material Science, (45):5820–5830.
  • Kocaefe, D., Poncsak, S., Dore, G., Younsi, R. 2008. Effect of heat treatment on the wettability of white ash and soft maple by water. Holz Roh Werkst, 66: 355–361.
  • Kol, H.S. 2010. Characteristics of heat-treated Turkish pine and fir wood after thermo wood processing. Journal of Environmen-tal Biology, 31(6): 1007-1011.
  • Korkut, S., Akgül, M., Dündar, T. 2008a. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresource Technology, 99: 1861-1868.
  • Korkut, S., Kök, M., Korkut, D., Gürleyen T. 2008b. The effects of heat treatment on technological properties in Red-bud maple (Acer trautvetteri Medw.) wood. Bioresource Technology, 99:1538-1543.
  • Kotilainen, R. 2000. Chemical changes in wood during heating at 150–260 °C. Ph.D. thesis, Jyvaskyla University. Research report 80, Finland.
  • Kubojima, Y., Okano, T., Ohta, M. 1998. Vibrational properties of Sitka spruce heat-treated in nitrogen gas. Journal of Wood Science, 44: 73-77.
  • Kuzman, M.K., Kutnar, A., Ayrilmis, N., Kariz, M. 2015. Effect of heat treatment on mechanical properties of selected wood joints. European Journal of Wood and Wood Products, 73: 689–691.
  • Mizutani, M., Ando, K. 2015. Influence of a wide range of moisture contents on the Poisson’s ratio of wood. Journal of Wood Science, 61: 81-85.
  • Ozyhar, T., Hering, S., Niemz, P. 2013a. Moisture-dependent orthotropic tension compression asymmetry of wood. Holzforschung, 67(4): 395–404.
  • Percin, O., Peker, H., Atilgan, A. 2016. The effect of heat treat-ment on some physical and mechanical properties of beech (Fagus orientalis Lipsky) wood. Wood Research, 61(3): 443-456.
  • Ross, R. J. 2010. Wood handbook: wood as an engineering material. General Technical Report (GTR). Forest Products La-boratory, Forest Service, USDA.
  • Taghiyari, H.R., Enayati, A., Gholamiyan, H. 2012. Effects of nano silver impregnation on brittleness, physical and mechanical properties of heat-treated hardwoods. Wood science and tech-nology, 47(3): 467-480.
  • Tufan, M.Z. 2016. Chemical and Physical Properties of Modi-fied Cedar Wood. Unpublished MSc. Thesis. Suleyman Demirel University, Graduate School of Natural and Applied Sciences. Isparta, Turkey.
  • Ünsal, O., Ayrilmis, N. 2005. Variations in compression strength and surface roughness of heat-treated Turkish river red gum. Journal of Wood Science, 51: 405-409.
  • Windeisen, E., Strobel, C., Wegener, G. 2007. Chemical changes during the production of thermo-treated beech wood. Wood Science and Technology, 41:523–536.
  • Windeisen, E., Bachle, H., Zimmer, B., Wegener, G. 2008. Rela-tions between chemical changes and mechanical properties of thermally treated wood. Holzforschung, 63(6): 773-778.
  • Xie, J., Chen, L., Shao, H., He, L., Jiang, Y., Lu, D., Xiao, H., Chen, Y., Huang, X., Hao, J., Tu, L., Lin, T., Xiao, Y., Chen, G., Qi, J. 2020. Changes in Physical-Mechanical Properties and Chemical Compositions of Toona Sinensis Wood Before and After Thermal Treatment. Wood Research, 65(6): 877-884.
  • Yang, T.H., Chang, F.R., Lin, C.J., Chang, F.C. 2016. Effects of Temperature and Duration of Heat Treatment on the Physical, Surface and Mechanical Properties of Japanese Cedar Wood. BioResources, 11(2): 3947-3963.
  • Yildiz, S., Gezer, E.D., Yildiz, U.C. 2006. Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment, 41(12): 1762-1766.
There are 38 citations in total.

Details

Primary Language English
Subjects Wood Physics and Mechanics
Journal Section Research Articles
Authors

Ergün Güntekin 0000-0002-8423-6664

Early Pub Date October 28, 2024
Publication Date December 9, 2024
Submission Date May 14, 2024
Acceptance Date July 22, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Güntekin, E. (2024). Effects of heat treatment on elastic constants of Cedar (Cedrus libani) wood. Ağaç Ve Orman, 5(2), 72-78. https://doi.org/10.59751/agacorman.1483782