Research Article
BibTex RIS Cite

Türkiye’de Yenilenebilir Enerji, Döviz Kuru ve Enflasyonun Tarım Sektörü İstihdamına Etkileri

Year 2023, Volume: 54 Issue: 3 - Research in Agricultural Sciences, 95 - 102, 19.10.2023
https://doi.org/10.5152/AUAF.2023.22018

Abstract

Bu araştırma, 1990–2019 döneminde yenilenebilir enerji kullanımı, döviz kuru ve enflasyonun Türkiye’de tarım sektörü istihdamı üzerindeki etkisi hakkında Autoregressive Distributed Lag (ARDL) sınır testi yaklaşımı kullanılarak ampirik kanıtlar sağlamak amacıyla yapılmıştır. Çalışmanın sonuçları, kısa dönemde yenilenebilir enerji kullanımında %1’lik bir artış için tarım sektörü istihdamının %1,06 oranında artacağını, enflasyon oranındaki %1’lik bir artışın tarım sektörü istihdamını %0,12’sini azaltacağını, %1 Türk lirasını değerlenmesinin ise tarım sektörü istihdamını %0,4 artırdığını göstermektedir. Uzun dönem ARDL modeli sonuçları, yenilenebilir enerji kullanımı ile tarım sektörü istihdamı arasında negatif bir ilişki olduğunu ve tarım sektörü istihdamında %1,06’lık bir düşüş ve yenilenebilir enerji kullanımında %1’lik bir artış olduğunu gösterirken, tarım sektörü istihdamında yüzde 0,09’luk bir azalma enflasyon oranındaki %1’lik bir artışa karşılık gelirken, her %1 Türk lirası değerlenmesi tarım sektörü istihdamını %0,08 oranında artırıyor. Bu araştırmanın sonuçları, kısa vadede yenilenebilir enerjinin tarımsal istihdamı teşvik eden itici güç olarak tanımlandığını göstermektedir. Bu arada, uzun vadede yenilenebilir enerji gelişimi, tarım sektörü istihdamını karşılayamıyor. Bu nedenle Türkiye, tarım sektöründe istihdamı artırabilecek yenilenebilir enerjiyi uzun vadede geliştirmeyi planlamalıdır. Türkiye’nin de tarım sektöründe istihdamı olumsuz etkilememesi için enflasyonu ve döviz kurunu düşük tutması gerekiyor

References

  • Algül, Y., & Kaya, V. (2021). Comparison of employment impacts of renewable and fossil energy based electricity sectors: The case of turkey. Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksekokulu Dergisi, 24(2), 421–439. [CrossRef]
  • Arouri, M., Ben Youssef, A., M’Henni, H., & Rault, C. (2021). Exploring the causality links between energy and employment in African countries. SSRN Electronic Journal. [CrossRef]
  • Becker, B., & Fischer, D. (2013). Promoting renewable electricity generation in emerging economies. Energy Policy, 56, 446–455. [CrossRef]
  • Cheung, Y., & Lai, K. S. (1995). Lag of order and critical values of the Augmented Dickey-Fuller test. Journal of Business and Economic Statistics, 13(3), 277–280. [CrossRef]
  • Chica-Olmo, J., Sari-Hassoun, S. H., & Moya-Fernández, P. (2020). Spatial relationship between economic growth and renewable energy consumption in 26 European countries. Energy Economics, 92. [CrossRef]
  • Deka, A., & Dube, S. (2021). Analyzing the causal relationship between exchange rate, renewable energy and inflation of Mexico (1990–2019) with ARDL bounds test approach. Renewable Energy Focus, 37(June), 78–83. [CrossRef]
  • Erdal, L. (2012). Türkiye’de yenilenebilir enerji yatırımları ve istihdam yaratma politikası. Sosyal ve Beşeri Bilimler Dergisi, 4(1), 171–181.
  • Fuinhas, J. A., & Marques, A. C. (2012). Energy consumption and economic growth nexus in Portugal, Italy, Greece, Spain and Turkey: An ARDL bounds test approach (1965–2009). Energy Economics, 34(2), 511–517. [CrossRef]
  • Ge, Y., & Zhi, Q. (2016). Literature review: The green economy, clean energy policy and employment. Energy Procedia, 88, 257–264. [CrossRef]
  • Hadjilambrinos, C. (2019). Renewable energy development as a job creation mechanism: Lessons from New Mexico. Journal of Research and innovation for Sustainable Society, 1(2), 36–43. [CrossRef]
  • Meyer, I., & Sommer, M. W. (2016). Employment effects of renewable energy deployment - A review. International Journal of Sustainable Development, 19(3), 217–245. [CrossRef]
  • Moreno, B., & López, A. J. (2008). The effect of renewable energy on employment. The case of Asturias (Spain). Renewable and Sustainable Energy Reviews, 12(3), 732–751. [CrossRef]
  • Paska, J., Sałek, M., & Surma, T. (2009). Current status and perspectives of renewable energy sources in Poland. Renewable and Sustainable Energy Reviews, 13(1), 142–154. [CrossRef]
  • Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289–326. [CrossRef]
  • Pestel, N. (2019). Employment effects of green energy policies. IZA World of Labor, 1–11. [CrossRef]
  • Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346. [CrossRef]
  • Proença, S., & Fortes, P. (2020). The social face of renewables: Econometric analysis of the relationship between renewables and employment. Energy Reports, 6, 581–586. [CrossRef]
  • Rahman, M. M., & Velayutham, E. (2020). Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia. Renewable Energy, 147, 399–408. [CrossRef]
  • Resquin, F., Navarro-Cerrillo, R. M., Rachid-Casnati, C., Hirigoyen, A., Carrasco-Letelier, L., & Duque-Lazo, J. (2018). Allometry, growth and survival of three eucalyptus species (Eucalyptus benthamii Maiden and Cambage, E. dunnii Maiden and E. grandis Hill ex Maiden) in high-density plantations in Uruguay. Forests, 9(12). [CrossRef]
  • Swarooprani, K. (2023). Component of solar energy in growth of rural India. International Journal of Science and Research Archive, 8(1), 570–572. [CrossRef]
  • The World Bank. (2021, January 29). Employment in agriculture (% of total employment) (modeled ILO estimate) - Turkey. Retrieved December 2021, from The World Bank: https://data.worldbank.org/indicator/SL. AGR.EMPL.ZS?locations=TR
  • Zhang, S., Chen, Y., Liu, X., Yang, M., & Xu, L. (2017). Employment effects of solar PV industry in China: A spreadsheet-based analytical model. Energy Policy, 109, 59–65. [CrossRef]

The Impacts of Renewable Energy, Exchange Rate, and Inflation on Agricultural Sector Employment in Turkey

Year 2023, Volume: 54 Issue: 3 - Research in Agricultural Sciences, 95 - 102, 19.10.2023
https://doi.org/10.5152/AUAF.2023.22018

Abstract

The Autoregressive Distributed Lag (ARDL) bounds test approach is used in this study to provide empirical evidence about the impact of renewable energy usage, exchange rate, and inflation
rate on agricultural sector employment in Turkey from 1990 to 2019. According to the study’s findings, a 1% increase in renewable energy usage will raise agricultural sector employment by
1.06% in the short run, a 1% inflation will reduce agricultural sector employment by 0.12%, and a 1% Turkish Lira appreciation will raise agricultural sector employment by 0.4%. The long-run ARDL
model results show a 1.06% decrease in agricultural sector employment for every 1% increase in renewable energy use, whereas inflation shows a 0.09% decrease in agricultural employment for
every 1% inflation rate, while every 1% Turkish Lira appreciation increases agricultural employment by 0.08%. Based on these study findings, renewable energy promotes agricultural employment in
the short run. In the meantime, long-term renewable energy development cannot accommodate agricultural sector employment. As a result, Turkey must devise a long-term renewable energy
development strategy that will increase employment while keeping inflation and exchange rates stable and not harming agricultural employment.

References

  • Algül, Y., & Kaya, V. (2021). Comparison of employment impacts of renewable and fossil energy based electricity sectors: The case of turkey. Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksekokulu Dergisi, 24(2), 421–439. [CrossRef]
  • Arouri, M., Ben Youssef, A., M’Henni, H., & Rault, C. (2021). Exploring the causality links between energy and employment in African countries. SSRN Electronic Journal. [CrossRef]
  • Becker, B., & Fischer, D. (2013). Promoting renewable electricity generation in emerging economies. Energy Policy, 56, 446–455. [CrossRef]
  • Cheung, Y., & Lai, K. S. (1995). Lag of order and critical values of the Augmented Dickey-Fuller test. Journal of Business and Economic Statistics, 13(3), 277–280. [CrossRef]
  • Chica-Olmo, J., Sari-Hassoun, S. H., & Moya-Fernández, P. (2020). Spatial relationship between economic growth and renewable energy consumption in 26 European countries. Energy Economics, 92. [CrossRef]
  • Deka, A., & Dube, S. (2021). Analyzing the causal relationship between exchange rate, renewable energy and inflation of Mexico (1990–2019) with ARDL bounds test approach. Renewable Energy Focus, 37(June), 78–83. [CrossRef]
  • Erdal, L. (2012). Türkiye’de yenilenebilir enerji yatırımları ve istihdam yaratma politikası. Sosyal ve Beşeri Bilimler Dergisi, 4(1), 171–181.
  • Fuinhas, J. A., & Marques, A. C. (2012). Energy consumption and economic growth nexus in Portugal, Italy, Greece, Spain and Turkey: An ARDL bounds test approach (1965–2009). Energy Economics, 34(2), 511–517. [CrossRef]
  • Ge, Y., & Zhi, Q. (2016). Literature review: The green economy, clean energy policy and employment. Energy Procedia, 88, 257–264. [CrossRef]
  • Hadjilambrinos, C. (2019). Renewable energy development as a job creation mechanism: Lessons from New Mexico. Journal of Research and innovation for Sustainable Society, 1(2), 36–43. [CrossRef]
  • Meyer, I., & Sommer, M. W. (2016). Employment effects of renewable energy deployment - A review. International Journal of Sustainable Development, 19(3), 217–245. [CrossRef]
  • Moreno, B., & López, A. J. (2008). The effect of renewable energy on employment. The case of Asturias (Spain). Renewable and Sustainable Energy Reviews, 12(3), 732–751. [CrossRef]
  • Paska, J., Sałek, M., & Surma, T. (2009). Current status and perspectives of renewable energy sources in Poland. Renewable and Sustainable Energy Reviews, 13(1), 142–154. [CrossRef]
  • Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289–326. [CrossRef]
  • Pestel, N. (2019). Employment effects of green energy policies. IZA World of Labor, 1–11. [CrossRef]
  • Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346. [CrossRef]
  • Proença, S., & Fortes, P. (2020). The social face of renewables: Econometric analysis of the relationship between renewables and employment. Energy Reports, 6, 581–586. [CrossRef]
  • Rahman, M. M., & Velayutham, E. (2020). Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia. Renewable Energy, 147, 399–408. [CrossRef]
  • Resquin, F., Navarro-Cerrillo, R. M., Rachid-Casnati, C., Hirigoyen, A., Carrasco-Letelier, L., & Duque-Lazo, J. (2018). Allometry, growth and survival of three eucalyptus species (Eucalyptus benthamii Maiden and Cambage, E. dunnii Maiden and E. grandis Hill ex Maiden) in high-density plantations in Uruguay. Forests, 9(12). [CrossRef]
  • Swarooprani, K. (2023). Component of solar energy in growth of rural India. International Journal of Science and Research Archive, 8(1), 570–572. [CrossRef]
  • The World Bank. (2021, January 29). Employment in agriculture (% of total employment) (modeled ILO estimate) - Turkey. Retrieved December 2021, from The World Bank: https://data.worldbank.org/indicator/SL. AGR.EMPL.ZS?locations=TR
  • Zhang, S., Chen, Y., Liu, X., Yang, M., & Xu, L. (2017). Employment effects of solar PV industry in China: A spreadsheet-based analytical model. Energy Policy, 109, 59–65. [CrossRef]
There are 22 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Hilmy Prıllıadı 0000-0001-5974-4352

Publication Date October 19, 2023
Published in Issue Year 2023 Volume: 54 Issue: 3 - Research in Agricultural Sciences

Cite

APA Prıllıadı, H. (2023). The Impacts of Renewable Energy, Exchange Rate, and Inflation on Agricultural Sector Employment in Turkey. Research in Agricultural Sciences, 54(3), 95-102. https://doi.org/10.5152/AUAF.2023.22018

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29919