Review
BibTex RIS Cite

Kuraklık Stresi Altında Polisakkarit Üreten Mikroorganizmalarla Ekim İmkânları

Year 2024, Volume: 55 Issue: 1, 2 - 10, 31.01.2024
https://doi.org/10.5152/AUAF.2024.23114

Abstract

Kuraklık/Su stresi, bitki büyümesini kısıtlayan önemli bir abiyotik strestir. Büyümeyi teşvik edici
özellikleriyle iyi bilinen bitki büyümesini teşvik eden rizobakteriler (PGPR), köklerin etrafında kuraklık
süresince onları daha uzun süre kuraklığa karşı koruyan hücre dışı polisakkaritler (EPS’ler) üretirler.
Toprak kalitesinin temel belirleyicilerinden biri olan arbusküler mikorizalar, toprağın topaklanma
özelliklerini gösteren ve su stabilitesinin arttırılmasına ve böylece kuraklık koşullarının aşılmasına
yardımcı olan glomalin proteinini salgılar; bu protein, toprak agregasyon özelliklerini gösterir ve
dolayısıyla kuraklık koşullarını aşarak su stabilitesini artırmaya yardımcı olur. Rhizosferik toprakta
EPS üreten PGPR ve mikorizal mantar yoğunluğunu artırmak, bitkilerin su stresi dönemlerinde
hayatta kalma şansını artırmak için bir yol olabilir. Bu derleme, EPS üreten mikroorganizmaların
kuraklık altında toprak sağlığının ve bitki büyümesinin korunmasındaki rolünü vurgulamaktadır.

References

  • Abdalla, A. K., Ayyash, M. M., Olaimat, A. N., Osaili, T. M., Al-Nabulsi, A. A., Shah, N. P., & Holley, R. (2021). Exopolysaccharides as antimicrobial agents: Mechanism and spectrum of activity. Frontiers in Microbiology, 12, 664395. [CrossRef]
  • Alvarez, S., Marsh, E. L., Schroeder, S. G., & Schachtman, D. P. (2008). Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant, Cell and Environment, 31(3), 325–340. [CrossRef]
  • Angelini, T. E., Roper, M., Kolter, R., Weitz, D. A., & Brenner, M. P. (2009). Bacillus subtilis spreads by surfing on waves of surfactant. Proceedings of the National Academy of Sciences of the United States of America, 106(43), 18109–18113. [CrossRef]
  • Bai, B., Liu, W. D., Qiu, X. Y., Zhang, J., Zhang, J. Y., & Bai, Y. (2022). The root microbiome: Community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology, 64(2), 230–243. [CrossRef]
  • Benard, P., Zarebanadkouki, M., Brax, R., Kaltenbach, I., Jerjen, F., Marone, E., Couradeau, V. J. M. N. L., Felde, K., A., & Carminati, A. (2019). Microhydrological niches in soils: How mucilage and EPS alter the biophysical properties of the rhizosphere and other biological hotspots. Vadose Zone Journal, 18, 180211. [CrossRef]
  • Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1–13. [CrossRef]
  • Branda, S. S., Chu, F., Kearns, D. B., Losick, R., & Kolter, R. (2006). A major protein component of the Bacillus subtilis biofilm matrix. Molecular Microbiology, 59(4), 1229–1238. [CrossRef]
  • Bridier, A., Meylheuc, T., & Briandet, R. (2013). Realistic representation of Bacillus subtilis biofilms architecture using combined microscopy (CLSM, ESEM and FESEM). Micron, 48, 65–69. [CrossRef]
  • Carles Brangarí, A., Sanchez-Vila, X., Freixa, A., Romaní, A. M., Rubol, S., & Fernàndez-Garcia, D. (2017). A mechanistic model (BCC-PSSICO) to predict changes in the hydraulic properties for bio-amended variably saturated soils. Water Resources Research, 53(1), 93–109. [CrossRef]
  • Chenu, C., & Roberson, E. B. (1996). Diffusion of glucose in microbial extracellular polysaccharides as affected by water potential. Soil Biology and Biochemistry, 28(7), 877–884. [CrossRef]
  • Concórdio-Reis, P., Reis, M. A. M., & Freitas, F. (2020). Biosorption of heavy metals by the bacterial exopolysaccharide FucoPol. Applied Sciences, 10(19), 6708. [CrossRef]
  • Driver, J. D., Holben, W. E., & Rillig, M. C. (2005). Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 37(1), 101–106. [CrossRef]
  • Dutta, A., Banerjee, S., Dinda, S., Chowdhury, I., Haldar, S., & Bandyopadhyay, S. (2022). A critical analysis on the roles of exopolysaccharides and ACC deaminase in salinity stress tolerance in crop plants. Biocatalysis and Agricultural Biotechnology, 42. [CrossRef]
  • Ercole, C., Cacchio, P., Botta, A. L., Centi, V., & Lepidi, A. (2007). Bacterially induced mineralization of calcium carbonate: The role of exopolysaccharides and capsular polysaccharides. Microscopy and Microanalysis, 13(1), 42–50. [CrossRef]
  • Fadiji, A. E., Santoyo, G., Yadav, A. N., & Babalola, O. O. (2022). Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Frontiers in Microbiology, 13, 962427. [CrossRef]
  • Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews. Microbiology, 8(9), 623–633. [CrossRef]
  • Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanisms of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food and Agriculture, 2(1). [CrossRef]
  • Hakim, S., Naqqash, T., Nawaz, M. S., Laraib, I., Siddique, M. J., Zia, R., Mirza, M. S., & Imran, A. (2021). Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Frontiers in Sustainable Food Systems, 5, 617157. [CrossRef]
  • Ilyas, N., Mumtaz, K., Akhtar, N., Yasmin, H., Sayyed, R. Z., Khan, W., El Enshasy, H. A. E., Dailin, D. J., Elsayed, E. A., & Ali, Z. (2020). Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability, 12(21), 8876. [CrossRef]
  • Isken, S., & de Bont, J. A. (1998). Bacteria tolerant to organic solvents. Extremophiles: Life under Extreme Conditions, 2(3), 229–238. [CrossRef]
  • Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.). Methods of Soil Analysis (pp. 425–442). Australian Society of Anaesthetists. [CrossRef]
  • Khan, N., & Bano, A. (2019). Exopolysaccharide-producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS One, 14(9), e0222302. [CrossRef]
  • Khan, N., Bano, A., & Babar, M. A. (2017). The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis, 72(3), 195–205. [CrossRef]
  • Kimmel, S. A., & Roberts, R. F. (1998). Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. International Journal of Food Microbiology, 40(1–2), 87–92. [CrossRef]
  • Kohler, J., Hernández, J. A., Caravaca, F., & Roldán, A. (2008). Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Functional Plant Biology, 35(2), 141–151. [CrossRef]
  • Kroener, E., Holz, M., Zarebanadkouki, M., Ahmed, M., & Carminati, A. (2018). Effects of mucilage on rhizosphere hydraulic functions depend on soil particle size. Vadose Zone Journal, 17(1), 1–11. [CrossRef]
  • Latif, M., Bukhari, S. A. H., Alrajhi, A. A., Alotaibi, F. S., Ahmad, M., Shahzad, A. N., Dewidar, A. Z., & Mattar, M. A. (2022). Inducing drought tolerance in wheat through exopolysaccharide-producing rhizobacteria. Agronomy, 12(5), 1140. [CrossRef]
  • Laus, M. C., Logman, T. J., Lamers, G. E., van Brussel, A. A., Carlson, R. W., & Kijne, J. W. (2006). A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Molecular Microbiology, 59(6), 1704–1713. [CrossRef]
  • Li, J., Meng, B., Chai, H., Yang, X., Song, W., Li, S., Lu, A., Zhang, T., & Sun, W. (2019). Arbuscular Mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science, 10, 499. [CrossRef]
  • Lutgen, E. R., Muir-Clairmont, D., Graham, J., & Rillig, M. C. (2003). Seasonality of arbuscular mycorrhizal hyphae and glomalin in a western Montana grassland. Plant and Soil, 257(1), 71–83. [CrossRef]
  • Miller, R. M., & Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. In Y. Kapulnik & D. D. Douds (Eds.). Arbuscular mycorrhizae: Molecular biology and physiology (pp. 3–18). Kluwer Academic Press.
  • Nadeem, S. M., Ahmad, M., Tufail, M. A., Asghar, H. N., Nazli, F., & Zahir, Z. A. (2021). Appraising the potential of EPS‐producing rhizobacteria with ACC‐deaminase activity to improve growth and physiology of maize under drought stress. Physiologia Plantarum, 172(2), 463–476. [CrossRef]
  • Naseem, H., Ahsan, M., Shahid, M. A., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 58(12), 1009–1022. [CrossRef]
  • Naseem, H., & Bano, A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9(1), 689–701. [CrossRef]
  • Nguyen, P. T., Nguyen, T. T., Bui, D. C., Hong, P. T., Hoang, Q. K., & Nguyen, H. T. (2020). Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications. AIMS Microbiology, 6(4), 451–469. [CrossRef]
  • Nielsen, P. H., & Jahn, A. (1999). Extraction of EPS. Microbial extracellular polymeric substances (pp. 49–72). Springer.
  • Oades, J. M. (1993). The role of biology in the formation, stabilization and degradation of soil structure. Soil Structure/soil biota interrelationships. International agricultural centre (pp. 377–400). Elsevier.
  • Ojuederie, O. B., Olanrewaju, O. S., & Babalola, O. O. (2019). Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy, 9(11), 712. [CrossRef]
  • Prasad, J. K., & Raghuwanshi, R. (2022). Mechanisms of multifarious soil microbial enzymes in plant growth promotion and environmental sustainability. In M. Shah & P. Verma (Eds.). Bioprospecting of Microbial Diversity: Challenges and outlook towards agricultural, industrial and environmental domains. Elsevier.
  • Prasad, J. K., Dey, R., & Raghuwanshi, R. (2022). Exopolysaccharide-producing rhizospheric bacteria enhances yield via promoting wheat (Triticum aestivum L.) growth at early stages. Microbiology, 91(6), 757–769. [CrossRef]
  • Rehm, B. H. (2010). Bacterial polymers: Biosynthesis, modifications and applications. Nature Reviews. Microbiology, 8(8), 578–592. [CrossRef]
  • Rillig, M. C. (2004). Arbuscular mycorrhizae, glomalin and soil aggregation. Canadian Journal of Soil Science, 84(4), 355–363. [CrossRef]
  • Roberson, E. B., & Firestone, M. K. (1992). Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Applied and Environmental Microbiology, 58(4), 1284–1291. [CrossRef]
  • Rockhold, M. L., Yarwood, R. R., Niemet, M. R., Bottomley, P. J., & Selker, J. S. (2002). Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media. Advances in Water Resources, 25(5), 477–495. [CrossRef]
  • Rodríguez-Navarro, D. N., Dardanelli, M. S., & Ruíz-Saínz, J. E. (2007). Attachment of bacteria to the roots of higher plants. FEMS Microbiology Letters, 272(2), 127–136. [CrossRef]
  • Rosenzweig, R., Shavit, U., & Furman, A. (2012). Water retention curves of biofilm-affected soils using xanthan as an analogue. Soil Science Society of America Journal, 76(1), 61–69. [CrossRef]
  • Ryan, M. H., & Graham, J. H. (2002). Is there a role for arbuscular mycorrhizal fungi agriculture? Plant and Soil, 244(1/2), 263–271. [CrossRef]
  • Sandhya, V. Z., Grover, M., Grover, M., Reddy, G., & Venkateswarlu, B. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAPP45. Biology and Fertility of Soils, 46(1), 17–26. [CrossRef]
  • Schnurr, P. J., & Allen, D. G. (2015). Factors affecting algae biofilm growth and lipid production: A review. Renewable and Sustainable Energy Reviews, 52, 418–429. [CrossRef]
  • Skvortsov, I. M., & Ignatov, V. V. (1998). Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: Properties and the possible role in interaction with plant roots. FEMS Microbiology Letters, 165(2), 223–229. [CrossRef]
  • Sutherland, I. W. (1977). Bacterial exopolysaccharides their nature and production. Surface carbohydrates of the prokaryotic cell (pp. 27–96). Academic Press.
  • Upadhyay, S. K., Singh, J. S., & Singh, D. P. (2011). Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity conditions. Pedosphere, 21(2), 214–222. [CrossRef]
  • van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., & Sanders, I. R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396(6706), 69–72. [CrossRef]
  • Vardharajula, S., Zulfikar Ali, S., Grover, M., Reddy, G., & Bandi, V. (2011). Drought tolerant plant growth promoting Bacillus spp.: Effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6(1), 1–14. [CrossRef]
  • Volk, E., Iden, S. C., Furman, A., Durner, W., & Rosenzweig, R. (2016). Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm. Water Resources Research, 52(8), 5813–5828. [CrossRef]
  • Wang, P., Liu, J. H., Xia, R. X., Wu, Q. S., Wang, M. Y., & Dong, T. (2011). Arbuscular mycorrhizal development, glomalin‐related soil protein (GRSP) content, and rhizospheric phosphatase activity in citrus orchards under different types of soil management. Journal of Plant Nutrition and Soil Science, 174(1), 65–72. [CrossRef]
  • Welsh, D. T. (2000). Ecological significance of compatible solute accumulation by microorganisms: From single cells to global climate. FEMS Microbiology Reviews, 24(3), 263–290. [CrossRef]
  • Wright, S. F., & Upadhyaya, A. (1998). A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil, 97–107.
  • Wu, Q. S., & Xia, R. X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water-stress conditions. Journal of Plant Physiology, 163(4), 417–425. [CrossRef]
  • Zheng, W., Zeng, S., Bais, H., LaManna, J. M., Hussey, D. S., Jacobson, D. L., & Jin, Y. (2018). Plant growth-promoting rhizobacteria (PGPR) reduce evaporation and increase soil water retention. Water Resources Research, 54(5), 3673–3687. [CrossRef]

Prospects of Cropping with Polysaccharides Producing Microbes Under Drought Stress

Year 2024, Volume: 55 Issue: 1, 2 - 10, 31.01.2024
https://doi.org/10.5152/AUAF.2024.23114

Abstract

Drought and water stress are the major abiotic stresses that limit plant growth. Plant growth-promoting rhizobacteria, well known for their growth-promoting attributes, produce extracellular polysaccharides that form rhizosheaths around the roots, thereby protecting them from desiccation for a longer duration. Arbuscular mycorrhizae, one of the key determinants of soil quality, secrete glomalin protein, which shows soil aggregation properties and helps increase water stability, thereby overcoming drought conditions. Increasing extracellular polysaccharide products using plant growth-promoting rhizobacteria and mycorrhizal fungi density in the rhizospheric soil can be a means to improve the survival of plants during water stress periods. The present review highlights the role of microbes producing extracellular polysaccharides in maintaining soil health and plant growth under drought.

References

  • Abdalla, A. K., Ayyash, M. M., Olaimat, A. N., Osaili, T. M., Al-Nabulsi, A. A., Shah, N. P., & Holley, R. (2021). Exopolysaccharides as antimicrobial agents: Mechanism and spectrum of activity. Frontiers in Microbiology, 12, 664395. [CrossRef]
  • Alvarez, S., Marsh, E. L., Schroeder, S. G., & Schachtman, D. P. (2008). Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant, Cell and Environment, 31(3), 325–340. [CrossRef]
  • Angelini, T. E., Roper, M., Kolter, R., Weitz, D. A., & Brenner, M. P. (2009). Bacillus subtilis spreads by surfing on waves of surfactant. Proceedings of the National Academy of Sciences of the United States of America, 106(43), 18109–18113. [CrossRef]
  • Bai, B., Liu, W. D., Qiu, X. Y., Zhang, J., Zhang, J. Y., & Bai, Y. (2022). The root microbiome: Community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology, 64(2), 230–243. [CrossRef]
  • Benard, P., Zarebanadkouki, M., Brax, R., Kaltenbach, I., Jerjen, F., Marone, E., Couradeau, V. J. M. N. L., Felde, K., A., & Carminati, A. (2019). Microhydrological niches in soils: How mucilage and EPS alter the biophysical properties of the rhizosphere and other biological hotspots. Vadose Zone Journal, 18, 180211. [CrossRef]
  • Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1–13. [CrossRef]
  • Branda, S. S., Chu, F., Kearns, D. B., Losick, R., & Kolter, R. (2006). A major protein component of the Bacillus subtilis biofilm matrix. Molecular Microbiology, 59(4), 1229–1238. [CrossRef]
  • Bridier, A., Meylheuc, T., & Briandet, R. (2013). Realistic representation of Bacillus subtilis biofilms architecture using combined microscopy (CLSM, ESEM and FESEM). Micron, 48, 65–69. [CrossRef]
  • Carles Brangarí, A., Sanchez-Vila, X., Freixa, A., Romaní, A. M., Rubol, S., & Fernàndez-Garcia, D. (2017). A mechanistic model (BCC-PSSICO) to predict changes in the hydraulic properties for bio-amended variably saturated soils. Water Resources Research, 53(1), 93–109. [CrossRef]
  • Chenu, C., & Roberson, E. B. (1996). Diffusion of glucose in microbial extracellular polysaccharides as affected by water potential. Soil Biology and Biochemistry, 28(7), 877–884. [CrossRef]
  • Concórdio-Reis, P., Reis, M. A. M., & Freitas, F. (2020). Biosorption of heavy metals by the bacterial exopolysaccharide FucoPol. Applied Sciences, 10(19), 6708. [CrossRef]
  • Driver, J. D., Holben, W. E., & Rillig, M. C. (2005). Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 37(1), 101–106. [CrossRef]
  • Dutta, A., Banerjee, S., Dinda, S., Chowdhury, I., Haldar, S., & Bandyopadhyay, S. (2022). A critical analysis on the roles of exopolysaccharides and ACC deaminase in salinity stress tolerance in crop plants. Biocatalysis and Agricultural Biotechnology, 42. [CrossRef]
  • Ercole, C., Cacchio, P., Botta, A. L., Centi, V., & Lepidi, A. (2007). Bacterially induced mineralization of calcium carbonate: The role of exopolysaccharides and capsular polysaccharides. Microscopy and Microanalysis, 13(1), 42–50. [CrossRef]
  • Fadiji, A. E., Santoyo, G., Yadav, A. N., & Babalola, O. O. (2022). Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Frontiers in Microbiology, 13, 962427. [CrossRef]
  • Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews. Microbiology, 8(9), 623–633. [CrossRef]
  • Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanisms of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food and Agriculture, 2(1). [CrossRef]
  • Hakim, S., Naqqash, T., Nawaz, M. S., Laraib, I., Siddique, M. J., Zia, R., Mirza, M. S., & Imran, A. (2021). Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Frontiers in Sustainable Food Systems, 5, 617157. [CrossRef]
  • Ilyas, N., Mumtaz, K., Akhtar, N., Yasmin, H., Sayyed, R. Z., Khan, W., El Enshasy, H. A. E., Dailin, D. J., Elsayed, E. A., & Ali, Z. (2020). Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability, 12(21), 8876. [CrossRef]
  • Isken, S., & de Bont, J. A. (1998). Bacteria tolerant to organic solvents. Extremophiles: Life under Extreme Conditions, 2(3), 229–238. [CrossRef]
  • Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.). Methods of Soil Analysis (pp. 425–442). Australian Society of Anaesthetists. [CrossRef]
  • Khan, N., & Bano, A. (2019). Exopolysaccharide-producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS One, 14(9), e0222302. [CrossRef]
  • Khan, N., Bano, A., & Babar, M. A. (2017). The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis, 72(3), 195–205. [CrossRef]
  • Kimmel, S. A., & Roberts, R. F. (1998). Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. International Journal of Food Microbiology, 40(1–2), 87–92. [CrossRef]
  • Kohler, J., Hernández, J. A., Caravaca, F., & Roldán, A. (2008). Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Functional Plant Biology, 35(2), 141–151. [CrossRef]
  • Kroener, E., Holz, M., Zarebanadkouki, M., Ahmed, M., & Carminati, A. (2018). Effects of mucilage on rhizosphere hydraulic functions depend on soil particle size. Vadose Zone Journal, 17(1), 1–11. [CrossRef]
  • Latif, M., Bukhari, S. A. H., Alrajhi, A. A., Alotaibi, F. S., Ahmad, M., Shahzad, A. N., Dewidar, A. Z., & Mattar, M. A. (2022). Inducing drought tolerance in wheat through exopolysaccharide-producing rhizobacteria. Agronomy, 12(5), 1140. [CrossRef]
  • Laus, M. C., Logman, T. J., Lamers, G. E., van Brussel, A. A., Carlson, R. W., & Kijne, J. W. (2006). A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Molecular Microbiology, 59(6), 1704–1713. [CrossRef]
  • Li, J., Meng, B., Chai, H., Yang, X., Song, W., Li, S., Lu, A., Zhang, T., & Sun, W. (2019). Arbuscular Mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science, 10, 499. [CrossRef]
  • Lutgen, E. R., Muir-Clairmont, D., Graham, J., & Rillig, M. C. (2003). Seasonality of arbuscular mycorrhizal hyphae and glomalin in a western Montana grassland. Plant and Soil, 257(1), 71–83. [CrossRef]
  • Miller, R. M., & Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. In Y. Kapulnik & D. D. Douds (Eds.). Arbuscular mycorrhizae: Molecular biology and physiology (pp. 3–18). Kluwer Academic Press.
  • Nadeem, S. M., Ahmad, M., Tufail, M. A., Asghar, H. N., Nazli, F., & Zahir, Z. A. (2021). Appraising the potential of EPS‐producing rhizobacteria with ACC‐deaminase activity to improve growth and physiology of maize under drought stress. Physiologia Plantarum, 172(2), 463–476. [CrossRef]
  • Naseem, H., Ahsan, M., Shahid, M. A., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 58(12), 1009–1022. [CrossRef]
  • Naseem, H., & Bano, A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9(1), 689–701. [CrossRef]
  • Nguyen, P. T., Nguyen, T. T., Bui, D. C., Hong, P. T., Hoang, Q. K., & Nguyen, H. T. (2020). Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications. AIMS Microbiology, 6(4), 451–469. [CrossRef]
  • Nielsen, P. H., & Jahn, A. (1999). Extraction of EPS. Microbial extracellular polymeric substances (pp. 49–72). Springer.
  • Oades, J. M. (1993). The role of biology in the formation, stabilization and degradation of soil structure. Soil Structure/soil biota interrelationships. International agricultural centre (pp. 377–400). Elsevier.
  • Ojuederie, O. B., Olanrewaju, O. S., & Babalola, O. O. (2019). Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy, 9(11), 712. [CrossRef]
  • Prasad, J. K., & Raghuwanshi, R. (2022). Mechanisms of multifarious soil microbial enzymes in plant growth promotion and environmental sustainability. In M. Shah & P. Verma (Eds.). Bioprospecting of Microbial Diversity: Challenges and outlook towards agricultural, industrial and environmental domains. Elsevier.
  • Prasad, J. K., Dey, R., & Raghuwanshi, R. (2022). Exopolysaccharide-producing rhizospheric bacteria enhances yield via promoting wheat (Triticum aestivum L.) growth at early stages. Microbiology, 91(6), 757–769. [CrossRef]
  • Rehm, B. H. (2010). Bacterial polymers: Biosynthesis, modifications and applications. Nature Reviews. Microbiology, 8(8), 578–592. [CrossRef]
  • Rillig, M. C. (2004). Arbuscular mycorrhizae, glomalin and soil aggregation. Canadian Journal of Soil Science, 84(4), 355–363. [CrossRef]
  • Roberson, E. B., & Firestone, M. K. (1992). Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Applied and Environmental Microbiology, 58(4), 1284–1291. [CrossRef]
  • Rockhold, M. L., Yarwood, R. R., Niemet, M. R., Bottomley, P. J., & Selker, J. S. (2002). Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media. Advances in Water Resources, 25(5), 477–495. [CrossRef]
  • Rodríguez-Navarro, D. N., Dardanelli, M. S., & Ruíz-Saínz, J. E. (2007). Attachment of bacteria to the roots of higher plants. FEMS Microbiology Letters, 272(2), 127–136. [CrossRef]
  • Rosenzweig, R., Shavit, U., & Furman, A. (2012). Water retention curves of biofilm-affected soils using xanthan as an analogue. Soil Science Society of America Journal, 76(1), 61–69. [CrossRef]
  • Ryan, M. H., & Graham, J. H. (2002). Is there a role for arbuscular mycorrhizal fungi agriculture? Plant and Soil, 244(1/2), 263–271. [CrossRef]
  • Sandhya, V. Z., Grover, M., Grover, M., Reddy, G., & Venkateswarlu, B. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAPP45. Biology and Fertility of Soils, 46(1), 17–26. [CrossRef]
  • Schnurr, P. J., & Allen, D. G. (2015). Factors affecting algae biofilm growth and lipid production: A review. Renewable and Sustainable Energy Reviews, 52, 418–429. [CrossRef]
  • Skvortsov, I. M., & Ignatov, V. V. (1998). Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: Properties and the possible role in interaction with plant roots. FEMS Microbiology Letters, 165(2), 223–229. [CrossRef]
  • Sutherland, I. W. (1977). Bacterial exopolysaccharides their nature and production. Surface carbohydrates of the prokaryotic cell (pp. 27–96). Academic Press.
  • Upadhyay, S. K., Singh, J. S., & Singh, D. P. (2011). Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity conditions. Pedosphere, 21(2), 214–222. [CrossRef]
  • van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., & Sanders, I. R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396(6706), 69–72. [CrossRef]
  • Vardharajula, S., Zulfikar Ali, S., Grover, M., Reddy, G., & Bandi, V. (2011). Drought tolerant plant growth promoting Bacillus spp.: Effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6(1), 1–14. [CrossRef]
  • Volk, E., Iden, S. C., Furman, A., Durner, W., & Rosenzweig, R. (2016). Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm. Water Resources Research, 52(8), 5813–5828. [CrossRef]
  • Wang, P., Liu, J. H., Xia, R. X., Wu, Q. S., Wang, M. Y., & Dong, T. (2011). Arbuscular mycorrhizal development, glomalin‐related soil protein (GRSP) content, and rhizospheric phosphatase activity in citrus orchards under different types of soil management. Journal of Plant Nutrition and Soil Science, 174(1), 65–72. [CrossRef]
  • Welsh, D. T. (2000). Ecological significance of compatible solute accumulation by microorganisms: From single cells to global climate. FEMS Microbiology Reviews, 24(3), 263–290. [CrossRef]
  • Wright, S. F., & Upadhyaya, A. (1998). A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil, 97–107.
  • Wu, Q. S., & Xia, R. X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water-stress conditions. Journal of Plant Physiology, 163(4), 417–425. [CrossRef]
  • Zheng, W., Zeng, S., Bais, H., LaManna, J. M., Hussey, D. S., Jacobson, D. L., & Jin, Y. (2018). Plant growth-promoting rhizobacteria (PGPR) reduce evaporation and increase soil water retention. Water Resources Research, 54(5), 3673–3687. [CrossRef]
There are 60 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Reviews
Authors

Richa Raghuwanshı This is me 0000-0003-1377-1499

Early Pub Date January 28, 2024
Publication Date January 31, 2024
Published in Issue Year 2024 Volume: 55 Issue: 1

Cite

APA Raghuwanshı, R. (2024). Prospects of Cropping with Polysaccharides Producing Microbes Under Drought Stress. Research in Agricultural Sciences, 55(1), 2-10. https://doi.org/10.5152/AUAF.2024.23114

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29919