Research Article
BibTex RIS Cite

Düşük Fosforlu Topraklarda Kök Morfolojik Özelliklerinden Yararlanarak Yayla Pirincinin Büyümesinin Artırılması

Year 2024, Volume: 55 Issue: 3, 175 - 182, 29.09.2024
https://doi.org/10.17097/agricultureatauni.1431751

Abstract

Low phosphorus (P) in the upland ecosystems negatively, influence rice growth and causes significant yield losses. In the present study, 9 upland rice genotypes were screened to identify root traits that support the growth in low P soil in a cement tank. Rice genotypes showed significant (p = ≤ 0.05) variation for number of root tips (NRT), number of root branching points (NBP), total root length (TRL), whole root network area (NA), average root diameter, root volume (RV), root surface area (RSA), first order root length (FORL), and second order root length (SORL). BW01 and ITA01 recorded the highest NRT, NBP, TRL, RV, NA, RSA, FORL and SORL while NERICA04 had the lowest representing 5.8, 8.0, 7.6, 6.8, 9.0, 5.8, and 9.3 differences in these traits under low P soil. NRT significantly positively correlated with NBP, TRL, NA, RV, RSA, FORL indicating the role of different root traits in foraging for soil nutrients. The principal component analysis (PCA) showed that the NRT, NBP, TRL, RSA and SORL are important and effective root traits for selection in rice breeding under low P soil supply. BW01 and ITA01 recorded well developed root system indicating that they are P-efficient than P-inefficient NERICA04 under low P soil conditions. Therefore, BW01 and ITA01 can targeted for cultivation in P deficient soils and also used as donor of novel root traits to improve P-inefficient rice cultivars.

Ethical Statement

This study adhered to the Department of Biological Sciences, University of Eldoret ethical principles.

Supporting Institution

This study was funded by the International Foundation of Science

Project Number

1-3-C-6639-1

Thanks

Bu araştırma projesi Uluslararası Bilim Vakfı tarafından 1-3-C-6639-1 numaralı hibe ile desteklenmiştir.

References

  • Alewell, C., Ringeval, B., Ballabio, C., Robinson, D.A., Panagos, P., & Borrelli, P. (2020). Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 11, 4546.
  • Anandan, A., Nagireddy, R., Sabarinathan, S., Bhatta, B.B., Mahender, A., Vinothkumar, M., Parameswaran, C., Panneerselvam, P., Subudhi, H., Meher, J., Bose, L. K., & Ali, J. (2022). Multi‑trait association study identifies loci associated with tolerance of low phosphorus in Oryza sativa and its wild relatives. Scientific Reports, 12,4089
  • Anderson J.M., & Ingram J.A.I. (1993). Tropical soil biology and fertility. Wallingford, CAB.
  • Anis, G.B., Zhang, Y., Wang, H., Li, W., Wu, W., Sun, L., Riaz, A., Cao, L., & Cheng, S. (2018). Genomic regions analysis of seedling root traits and their regulation in responses to phosphorus deficiency tolerance in CSSL population of elite super hybrid rice. International Journal of Molecular Science, 19,1460
  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54,464-465.
  • De Bauw, P., Mai, T.H., Schnepf, A., Merckx, R., Smolders, E. & Vanderborght, J. (2020). A functional-structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils. Annals of Botany, 126, 789-806.
  • Dinh, L.T., Ueda, Y., Gonzalez, D., Pariasca Tanaka J., Takanashi, H. & Wissuwa, M. (2023). Novel QTL for Lateral Root Density and Length Improve Phosphorus Uptake in Rice (Oryza sativa L.). Rice, 16, 37.
  • Fitter, A., Williamson, L., Linkohr, B., & Leyser, O. (2002). Root system architecture determines fitness in an Arabidopsis mutant in competition for immobile phosphate ions but not for nitrate ions. Proceedings of Royal Society B-Biological Science, 269, 2017-2022.
  • Freschet, G.T. & Roumet, C. (2017). Sampling roots to capture plant and soil functions. Functional Ecology, 31, 1506-1518.
  • GenStat. (2003). GenStat for Windows. Release 4.23DE discovery edition. Hemel Hempstead, VSN.
  • Gutierrez-Alanis, D., Ojeda-Rivera, J. O., Yong-Villalobos, L., Cardenas-Torres, L., & Herrera-Estrella, L. (2018). Adaptation to phosphate scarcity: Tips from Arabidopsis roots. Trends in Plant Sciences, 23, 721-730.
  • IBM SPSS Statics for Windows, Version 23.0. Armonk, NY: IBM Corp
  • Jama, B. & Van Straaten, P. (2006). Potential of East African phosphate rock deposits in integrated nutrient management strategies. Anais da Academia Brasileira de Ciências, 78(4), 781-90.
  • Kale, R.R., Anila, M., Swamy, H.K.M., Bhadana, V.P., Rani, Ch. V.D., Senguttuvel, P., Subrahmanyam,D., Hajira, S.K., Rekha, G., Ayyappadass, M., Laxmiprasanna, B., Punniakotti, E., Kousik, M.B.V.N., Kulkarni, S., Dilip, T., Sinha, P., Harika, G., Pranathi, K., Chaitra, K., Anantha, M. S., Brajendra, P., Subbarao, L.V., Balachandran, S.M., Mangrauhuia, S.K., & Sundaram, R.M. (2021a). Morphological and molecular screening of rice germplasm lines for low soil P tolerance. Journal of Plant Biochemistry and Biotechnology, 30, 275-286.
  • Kale, R.R., Rani, D.C.V., Anila, M., Swamy, M.H.K., Bhadana, V.P., Senguttuvel, P., Subrahmanyam, D., Dass, M.A., Swapnil, K., Anantha, M.S., Punniakotti, E., Prasanna, B.L., Rekha, G., Sinha, P., Kousik, M.B.V.N., Dilip, T., Hajira, S.K., Brajendra, P., Mangrauthia, S.K., Gireesh, C., Tuti, M., Mahendrakumar, R., Giri, J., Singh, P., & Sundaram, R.M. (2021b). Novel major QTLs associated with low soil phosphorus tolerance identified from the Indian rice landrace,Wazuhophek. PLoS ONE, 16(7), e0254526.
  • Kayoumu M., Li, X., Iqbal, A., Wang, X., Gui, H., Qi, Q., Ruan, S., Guo, R., Dong, Q., Zhang. X. & Song, M. (2022). Genetic variation in morphological traits in cotton and their roles in increasing phosphorus-use efficiency in response to low phosphorus availability. Frontiers in Plant Sciences, 13, 1051080.
  • Kaysar, M.S., Sarker, U.K., Monira, S., Hossain, M.A., Haque, M.S., Somaddar, U., Saha, G., Chaki, A.K., & Uddin, M.R. (2022). Dissecting the relationship between root morphological traits and yield attributes in diverse rice cultivars under subtropical conditions. Life, 12, 1519
  • Marin, M., Feeney, D.S., Brown, L.K., Ruiz, S., Koebernick, N., Bengough, A.G., Hallet, P.D., Roose, T., Puértolas, J., Dodd, I.C., & George, T.S. (2021). Significance of root hairs for plant performance under contrasting field conditions and water deficit. Annals of Botany, 128, 1-16.
  • Mori, A., Fukuda, T., Vejchasarn, P., Nestler, J., Pariasca-Tanaka, J., & Wissuwa, M. (2016). The role of root size versus root efficiency in phosphorus acquisition in rice. Journal of Experimental Botany, 67, 1179-1189.
  • Nelson, D.W. & Sommers, LE. (1982). Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR, editors. Methods of soil analysis, part 2. Chemical and microbiological properties. Madison (WI): American Society of Agronomy, 539-579.
  • Panda, S., Bhatt, B. B., Bastia, D., Patra, B. C. & Anandan, A. (2021). Multiple trait contribution towards phosphorus deficiency tolerance at species level in early vegetative stage of rice. Indian Journal of Genetics and Plant Breeding, 81(4), 548-556.
  • Pariasca-Tanaka, J., Vandamme, E., Mori, A., Segda, Z., Saito, K., Rose, J.T., & Wissuwa, M. (2015). Does reducing seed-P concentrations affect seedling vigor and grain yield of rice? Plant Soil, 392, 253-266.
  • Pregitzer, K.S. (2002). Fine roots of trees-a new perspective. New Phytologist, 154, 267-270.
  • Rakotoson, T., Holz, M., & Wissuwa, M. (2020). Phosphorus deficiency tolerance in Oryza sativa: Root and rhizosphere traits. Rhizosphere, 14, 100198.
  • Ranaivo, H. N., Lam, D.T., Ueda, Y., Pariasca-Tanaka, J., Takanashi, H., Ramanankaja, L., Razafimbelo, T. & Wissuwa, M. (2022). QTL mapping for early root and shoot vigor of upland rice (Oryza sativa L.) under P deficient field conditions in Japan and Madagascar. Frontiers in Plant Science, 13, 1017419.
  • Sahrawat, K.L. (1987). Determination of calcium, magnesium, zinc and manganese in plant tissue using a dilute HCl extraction method. Communications in Soil Science and Plant Analysis, 18(9), 947-962
  • Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G.T., & York, L.M. (2021). RhizoVision Explorer: Open-source software for root image analysis and measurement standardization.
  • Solangi, A.M., Khanzada, H., Wassan, G.M., Rasheed, A., Keerio, A., Solangi, M., Khanzada, S., Faheem, M., Bian, J., Pan, X., Han, R.C., He, X., & Wu, Z. (2020). Genetic mapping and identification of new major loci for tolerance to low phosphorus stress in rice. Physiology and Molecular Biology of Plants, 26(9), 1897-1910.
  • Soltanpour, P.N. & Workman, S. (1979). Modification of the NaHCO3 DTPA soil test to omit carbon black. Communications in Soil and Plant Analysis, 10, 1411-1420
  • Wissuwa, M., Gonzalez, D., & Watts-Willliams, S. J. (2020). The contribution of plant traits and soil microbes to phosphorus uptake from low-phosphorus soil in upland rice varieties. Plant Soil, 448, 523-537.

Enhancing Growth of Upland Rice in Low-Phosphorus Soil by Leveraging Root Morphological Traits

Year 2024, Volume: 55 Issue: 3, 175 - 182, 29.09.2024
https://doi.org/10.17097/agricultureatauni.1431751

Abstract

Low phosphorus (P) in the upland ecosystems negatively, influence rice growth and causes significant yield losses. In the present study, 9 upland rice genotypes were screened to identify root traits that support the growth in low P soil in a cement tank. Rice genotypes showed significant (p = ≤ 0.05) variation for number of root tips (NRT), number of root branching points (NBP), total root length (TRL), whole root network area (NA), average root diameter, root volume (RV), root surface area (RSA), first order root length (FORL), and second order root length (SORL). BW01 and ITA01 recorded the highest NRT, NBP, TRL, RV, NA, RSA, FORL and SORL while NERICA04 had the lowest representing 5.8, 8.0, 7.6, 6.8, 9.0, 5.8, and 9.3 differences in these traits under low P soil. NRT significantly positively correlated with NBP, TRL, NA, RV, RSA, FORL indicating the role of different root traits in foraging for soil nutrients. The principal component analysis (PCA) showed that the NRT, NBP, TRL, RSA and SORL are important and effective root traits for selection in rice breeding under low P soil supply. BW01 and ITA01 recorded well developed root system indicating that they are P-efficient than P-inefficient NERICA04 under low P soil conditions. Therefore, BW01 and ITA01 can targeted for cultivation in P deficient soils and also used as donor of novel root traits to improve P-inefficient rice cultivars.

Supporting Institution

This research project was supported by the International Foundation for Science grant number 1-3-C-6639-1.

Project Number

1-3-C-6639-1

Thanks

The authors thank Mr. Richard Nyagwachi from the Department of Biological Sciences, University of Eldoret, for assisting with setting up the greenhouse experiment; Mr. Wilson Kwoba Odunga for helping with the root analysis; Dr John Kimani from the Kenya Agricultural Livestock Research for providing rice germplasm.

References

  • Alewell, C., Ringeval, B., Ballabio, C., Robinson, D.A., Panagos, P., & Borrelli, P. (2020). Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 11, 4546.
  • Anandan, A., Nagireddy, R., Sabarinathan, S., Bhatta, B.B., Mahender, A., Vinothkumar, M., Parameswaran, C., Panneerselvam, P., Subudhi, H., Meher, J., Bose, L. K., & Ali, J. (2022). Multi‑trait association study identifies loci associated with tolerance of low phosphorus in Oryza sativa and its wild relatives. Scientific Reports, 12,4089
  • Anderson J.M., & Ingram J.A.I. (1993). Tropical soil biology and fertility. Wallingford, CAB.
  • Anis, G.B., Zhang, Y., Wang, H., Li, W., Wu, W., Sun, L., Riaz, A., Cao, L., & Cheng, S. (2018). Genomic regions analysis of seedling root traits and their regulation in responses to phosphorus deficiency tolerance in CSSL population of elite super hybrid rice. International Journal of Molecular Science, 19,1460
  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54,464-465.
  • De Bauw, P., Mai, T.H., Schnepf, A., Merckx, R., Smolders, E. & Vanderborght, J. (2020). A functional-structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils. Annals of Botany, 126, 789-806.
  • Dinh, L.T., Ueda, Y., Gonzalez, D., Pariasca Tanaka J., Takanashi, H. & Wissuwa, M. (2023). Novel QTL for Lateral Root Density and Length Improve Phosphorus Uptake in Rice (Oryza sativa L.). Rice, 16, 37.
  • Fitter, A., Williamson, L., Linkohr, B., & Leyser, O. (2002). Root system architecture determines fitness in an Arabidopsis mutant in competition for immobile phosphate ions but not for nitrate ions. Proceedings of Royal Society B-Biological Science, 269, 2017-2022.
  • Freschet, G.T. & Roumet, C. (2017). Sampling roots to capture plant and soil functions. Functional Ecology, 31, 1506-1518.
  • GenStat. (2003). GenStat for Windows. Release 4.23DE discovery edition. Hemel Hempstead, VSN.
  • Gutierrez-Alanis, D., Ojeda-Rivera, J. O., Yong-Villalobos, L., Cardenas-Torres, L., & Herrera-Estrella, L. (2018). Adaptation to phosphate scarcity: Tips from Arabidopsis roots. Trends in Plant Sciences, 23, 721-730.
  • IBM SPSS Statics for Windows, Version 23.0. Armonk, NY: IBM Corp
  • Jama, B. & Van Straaten, P. (2006). Potential of East African phosphate rock deposits in integrated nutrient management strategies. Anais da Academia Brasileira de Ciências, 78(4), 781-90.
  • Kale, R.R., Anila, M., Swamy, H.K.M., Bhadana, V.P., Rani, Ch. V.D., Senguttuvel, P., Subrahmanyam,D., Hajira, S.K., Rekha, G., Ayyappadass, M., Laxmiprasanna, B., Punniakotti, E., Kousik, M.B.V.N., Kulkarni, S., Dilip, T., Sinha, P., Harika, G., Pranathi, K., Chaitra, K., Anantha, M. S., Brajendra, P., Subbarao, L.V., Balachandran, S.M., Mangrauhuia, S.K., & Sundaram, R.M. (2021a). Morphological and molecular screening of rice germplasm lines for low soil P tolerance. Journal of Plant Biochemistry and Biotechnology, 30, 275-286.
  • Kale, R.R., Rani, D.C.V., Anila, M., Swamy, M.H.K., Bhadana, V.P., Senguttuvel, P., Subrahmanyam, D., Dass, M.A., Swapnil, K., Anantha, M.S., Punniakotti, E., Prasanna, B.L., Rekha, G., Sinha, P., Kousik, M.B.V.N., Dilip, T., Hajira, S.K., Brajendra, P., Mangrauthia, S.K., Gireesh, C., Tuti, M., Mahendrakumar, R., Giri, J., Singh, P., & Sundaram, R.M. (2021b). Novel major QTLs associated with low soil phosphorus tolerance identified from the Indian rice landrace,Wazuhophek. PLoS ONE, 16(7), e0254526.
  • Kayoumu M., Li, X., Iqbal, A., Wang, X., Gui, H., Qi, Q., Ruan, S., Guo, R., Dong, Q., Zhang. X. & Song, M. (2022). Genetic variation in morphological traits in cotton and their roles in increasing phosphorus-use efficiency in response to low phosphorus availability. Frontiers in Plant Sciences, 13, 1051080.
  • Kaysar, M.S., Sarker, U.K., Monira, S., Hossain, M.A., Haque, M.S., Somaddar, U., Saha, G., Chaki, A.K., & Uddin, M.R. (2022). Dissecting the relationship between root morphological traits and yield attributes in diverse rice cultivars under subtropical conditions. Life, 12, 1519
  • Marin, M., Feeney, D.S., Brown, L.K., Ruiz, S., Koebernick, N., Bengough, A.G., Hallet, P.D., Roose, T., Puértolas, J., Dodd, I.C., & George, T.S. (2021). Significance of root hairs for plant performance under contrasting field conditions and water deficit. Annals of Botany, 128, 1-16.
  • Mori, A., Fukuda, T., Vejchasarn, P., Nestler, J., Pariasca-Tanaka, J., & Wissuwa, M. (2016). The role of root size versus root efficiency in phosphorus acquisition in rice. Journal of Experimental Botany, 67, 1179-1189.
  • Nelson, D.W. & Sommers, LE. (1982). Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR, editors. Methods of soil analysis, part 2. Chemical and microbiological properties. Madison (WI): American Society of Agronomy, 539-579.
  • Panda, S., Bhatt, B. B., Bastia, D., Patra, B. C. & Anandan, A. (2021). Multiple trait contribution towards phosphorus deficiency tolerance at species level in early vegetative stage of rice. Indian Journal of Genetics and Plant Breeding, 81(4), 548-556.
  • Pariasca-Tanaka, J., Vandamme, E., Mori, A., Segda, Z., Saito, K., Rose, J.T., & Wissuwa, M. (2015). Does reducing seed-P concentrations affect seedling vigor and grain yield of rice? Plant Soil, 392, 253-266.
  • Pregitzer, K.S. (2002). Fine roots of trees-a new perspective. New Phytologist, 154, 267-270.
  • Rakotoson, T., Holz, M., & Wissuwa, M. (2020). Phosphorus deficiency tolerance in Oryza sativa: Root and rhizosphere traits. Rhizosphere, 14, 100198.
  • Ranaivo, H. N., Lam, D.T., Ueda, Y., Pariasca-Tanaka, J., Takanashi, H., Ramanankaja, L., Razafimbelo, T. & Wissuwa, M. (2022). QTL mapping for early root and shoot vigor of upland rice (Oryza sativa L.) under P deficient field conditions in Japan and Madagascar. Frontiers in Plant Science, 13, 1017419.
  • Sahrawat, K.L. (1987). Determination of calcium, magnesium, zinc and manganese in plant tissue using a dilute HCl extraction method. Communications in Soil Science and Plant Analysis, 18(9), 947-962
  • Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G.T., & York, L.M. (2021). RhizoVision Explorer: Open-source software for root image analysis and measurement standardization.
  • Solangi, A.M., Khanzada, H., Wassan, G.M., Rasheed, A., Keerio, A., Solangi, M., Khanzada, S., Faheem, M., Bian, J., Pan, X., Han, R.C., He, X., & Wu, Z. (2020). Genetic mapping and identification of new major loci for tolerance to low phosphorus stress in rice. Physiology and Molecular Biology of Plants, 26(9), 1897-1910.
  • Soltanpour, P.N. & Workman, S. (1979). Modification of the NaHCO3 DTPA soil test to omit carbon black. Communications in Soil and Plant Analysis, 10, 1411-1420
  • Wissuwa, M., Gonzalez, D., & Watts-Willliams, S. J. (2020). The contribution of plant traits and soil microbes to phosphorus uptake from low-phosphorus soil in upland rice varieties. Plant Soil, 448, 523-537.
There are 30 citations in total.

Details

Primary Language English
Subjects Precision Agriculture Technologies
Journal Section Research Articles
Authors

Justus Mutembei 0009-0002-4201-4518

Benson Nyongesa 0000-0003-4860-8966

Project Number 1-3-C-6639-1
Early Pub Date September 27, 2024
Publication Date September 29, 2024
Submission Date February 5, 2024
Acceptance Date September 3, 2024
Published in Issue Year 2024 Volume: 55 Issue: 3

Cite

APA Mutembei, J., & Nyongesa, B. (2024). Enhancing Growth of Upland Rice in Low-Phosphorus Soil by Leveraging Root Morphological Traits. Research in Agricultural Sciences, 55(3), 175-182. https://doi.org/10.17097/agricultureatauni.1431751

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29919