To address growing concerns about sustainable agriculture and waste management, this study aimed to explore the viability of tea waste as an eco-friendly alternative substrate for cultivating Charleston peppers (Capsicum annuum), with the goal of optimizing plant growth and yield while reducing soil dependence, lowering cultivation costs, and repurposing agro-industrial waste. Six different substrate combinations were evaluated: 1) Tea waste, 2) Tea waste + Manure, 3) Tea waste + Soil, 4) Manure + Soil, 5) Tea waste + Manure + Soil, and 6) Tea waste + Manure + Soil + Perlite. Data were analyzed using both multivariate and univariate analyses to assess significant differences among treatments. Notably, significant differences in stem diameter were observed among plants grown on different substrates (one-way MANOVA, p <.05). However, plant height and chlorophyll content remained unaffected by substrate type. Although leaf structure exhibited considerable variation across treatments, no significant difference in dry matter content was observed. These results demonstrate that tea waste, especially when combined with other materials, is a promising sustainable substrate for Charleston pepper cultivation, potentially reducing soil dependence and agro-industrial waste.
Alkan, N., Terzi, Y., Khan, U., Bascinar, N., & Seyhan, K. (2019). Evaluation of seasonal variations in surface water quality of the Caglayan, Firtina and Ikizdere rivers from Rize, Turkey. Fresenius Environmental Bulletin, 28(12A), 9679-9688.
Anaya-Esparza, L. M., Mora, Z. V.-d. l., Vázquez-Paulino, O., Ascencio, F., & Villarruel-López, A. (2021). Bell Peppers (Capsicum annum L.) Losses and Wastes: Source for Food and Pharmaceutical Applications. Molecules, 26(17), 5341. Retrieved from https://www.mdpi.com/1420-3049/26/17/5341
Barathi, M., Kumar, A. S. K., Kodali, J., Mittal, S., Samhith, G. D., & Rajesh, N. (2017). Probing the Interaction between Fluoride and the Polysaccharides in Al(III)- and Zr (IV)-Modified Tea Waste by Using Diverse Analytical Characterization Techniques. ChemistrySelect, 2(31), 10123-10135. https://doi.org/10.1002/slct.201701774
Coman, V., Teleky, B.-E., Mitrea, L., Martău, G. A., Szabo, K., Călinoiu, L.-F., & Vodnar, D. C. (2020). Chapter Five - Bioactive potential of fruit and vegetable wastes. In F. Toldrá (Ed.), Advances in Food and Nutrition Research (Vol. 91, pp. 157-225): Academic Press.
da Silva Magalhães, D., Viegas, I. d. J. M., da Silva Barata, H., Costa, M. G., da Silva, B. C., & de Lima Mera, W. Y. W. (2023). Deficiencies of nitrogen, calcium, and micronutrients are the most limiting factors for growth and yield of smell pepper plants 1. Revista Ceres, 70(3), 125-135.
De Almeida, T., da Rosa, S., Oliveira, J., OLIVEIRA, A. d. S., da Silva, A., & PEREIRA, D. d. S. (2014). Influence of tannin on sorghum seed germination.
Debnath, B., Haldar, D., & Purkait, M. K. (2021). Potential and sustainable utilization of tea waste: A review on present status and future trends. Journal of Environmental Chemical Engineering, 9(5), 106179. https://doi.org/10.1016/j.jece.2021.106179
Duarah, P., Haldar, D., Singhania, R. R., Dong, C.-D., Patel, A. K., & Purkait, M. K. (2024). Sustainable management of tea wastes: resource recovery and conversion techniques. Critical Reviews in Biotechnology, 44(2), 255-274 https://doi.org/10.1080/07388551.2022.2157701
FAOSTAT. (2023). Food and agriculture data. Crops and livestock products. Available online: https://www.fao.org/faostat/en/#data (accessed on 09/09/2024).
Ho, C.-T., Lin, J.-K., & Shahidi, F. (2008). Tea and tea products: chemistry and health-promoting properties: 1st ed. Boca Raton: CRC press.
Hunde, N. F. (2020). Yield response and nutrient use efficiencies of hot pepper (Capsicum annuum L.) to inorganic fertilizers in Ethiopia: A review article. International Journal of Research in Agronomy, 3, 25-32.
Industry Research. (2022). Global “Tea Market” Research Report 2022-2027.
https://www.globenewswire.com/en/news-release/2022/03/24/2409291/0/en/Global-Tea-Market-Size-Share-Industry-Demand-2022-2027-Type-Green-Tea-Black-Tea-Oolong-Tea-Dark-Tea-Other-Growing-at-a-CAGR-of-6-4-Leading-Players-Updates-Emerging-Trends-Investmen.html
Kaliaperumal, V., Subramaniyan, V., Renganathan, S., Mohandoss, N., Hatamleh, A. A., Alnafisi, B. K., Kim, W., & Subramaniyan, P. (2023). Bioremediations analysis using multifactorial porous materials derived from tea residue. Environmental Research, 216, 114634. https://doi.org/10.1016/j.envres.2022.114634
Karataş, A. (2022). Effects of different agro-industrial waste as substrates on proximate composition, metals, and mineral contents of oyster mushroom (Pleurotus ostreatus). International Journal of Food Science & Technology, 57(3), 1429-1439. https://doi.org/10.1111/ijfs.15506
Kumar, V., Bhat, S. A., Kumar, S., Verma, P., Badruddin, I. A., Américo-Pinheiro, J. H. P., Sathyamurthy, R., & Atabani, A. E. (2023). Tea byproducts biorefinery for bioenergy recovery and value-added products development: A step towards environmental sustainability. Fuel, 350, 128811. https://doi.org/10.1016/j.fuel.2023.128811
Manyuchi, M., Mbohwa, C., & Muzenda, E. (2018). Biogas and Bio solids production from tea waste through anaerobic digestion. Paper presented at the Proceedings of the International Conference on Industrial Engineering and Operations Management.
Nahed, M., El-Sayeda, H., El‑Badawy, M., & Hager, I. T. (2015). Response of sweet pepper plants to some organic and bio-fertilizers and its effect on fruit yield and quality. Middle East J. Agric. Res, 4(3), 435-445.
Pane, C., Palese, A. M., Spaccini, R., Piccolo, A., Celano, G., & Zaccardelli, M. (2016). Enhancing sustainability of a processing tomato cultivation system by using bioactive compost teas. Scientia Horticulturae, 202, 117-124. https://doi.org/10.1016/j.scienta.2016.02.034
Peksen, A., & Yakupoglu, G. (2009). Tea waste as a supplement for the cultivation of Ganoderma lucidum. World Journal of Microbiology and Biotechnology, 25(4), 611-618. https://doi.org/10.1007/s11274-008-9931-z
Prabhu, L., Krishnaraj, V., Sathish, S., Gokulkumar, S., Karthi, N., Rajeshkumar, L., Balaji, D., Vigneshkumar, N., Elango, K. S., Karpagam, J., Vijayalakshmi, V. J., Gowarthan, E. R., & Jayakumar, H. (2021). Experimental investigation on mechanical properties of flax/banana/ industrial waste tea leaf fiber reinforced hybrid polymer composites. Materials Today: Proceedings, 45, 8136-8143. https://doi.org/10.1016/j.matpr.2021.02.111
Ratnaji, T., & Kennedy, L. J. (2020). Hierarchical porous carbon derived from tea waste for energy storage applications: Waste to worth. Diamond and Related Materials, 110, 108100. https://doi.org/10.1016/j.diamond.2020.108100
Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512-531. https://doi.org/10.1111/1541-4337.12330
Samtiya, M., Aluko, R. E., Dhewa, T., & Moreno-Rojas, J. M. (2021). Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods, 10(4), 839. Retrieved from https://www.mdpi.com/2304-8158/10/4/839
Seth, D., Athparia, M., Singh, A., Rathore, D., Venkatramanan, V., Channashettar, V., Prasad, S., Maddirala, S., Sevda, S., & Kataki, R. (2023). Sustainable environmental practices of tea waste—a comprehensive review. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-30848-3
Shi, J., Yang, G., You, Q., Sun, S., Chen, R., Lin, Z., Simal-Gandara, J., & Lv, H. (2023). Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021). Critical Reviews in Food Science and Nutrition, 63(20), 4757-4784. https://doi.org/10.1080/10408398.2021.2007353
Sial, T. A., Liu, J., Zhao, Y., Khan, M. N., Lan, Z., Zhang, J., Kumbhar, F., Akhtar, K., & Rajpar, I. (2019). Co-Application of Milk Tea Waste and NPK Fertilizers to Improve Sandy Soil Biochemical Properties and Wheat Growth. Molecules, 24(3), 423. Retrieved from https://www.mdpi.com/1420-3049/24/3/423
Sökmen, M., Demir, E., & Alomar, S. Y. (2018). Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. The Journal of Supercritical Fluids, 133, 171-176. https://doi.org/10.1016/j.supflu.2017.09.027
Sui, W., Xiao, Y., Liu, R., Wu, T., & Zhang, M. (2019). Steam explosion modification on tea waste to enhance bioactive compounds' extractability and antioxidant capacity of extracts. Journal of Food Engineering, 261, 51-59. https://doi.org/10.1016/j.jfoodeng.2019.03.015
Wang, Y.-J., Li, T.-H., Jin, G., Wei, Y.-M., Li, L.-Q., Kalkhajeh, Y. K., Ning, J.-M., & Zhang, Z.-Z. (2020). Qualitative and quantitative diagnosis of nitrogen nutrition of tea plants under field condition using hyperspectral imaging coupled with chemometrics. Journal of the Science of Food and Agriculture, 100(1), 161-167. https://doi.org/10.1002/jsfa.10009
Wang, Z., Ahmad, W., Zhu, A., Zhao, S., Ouyang, Q., & Chen, Q. (2024). Recent advances review in tea waste: High-value applications, processing technology, and value-added products. Science of the Total Environment, 946, 174225. https://doi.org/10.1016/j.scitotenv.2024.174225
Wasewar, K. L., Atif, M., Prasad, B., & Mishra, I. M. (2009). Batch adsorption of zinc on tea factory waste. Desalination, 244(1), 66-71. https://doi.org/10.1016/j.desal.2008.04.036
Wong, M., Sirisena, S., & Ng, K. (2022). Phytochemical profile of differently processed tea: A review. Journal of Food Science, 87(5), 1925-1942. https://doi.org/10.1111/1750-3841.16137
Zou, Y., Qiu, B., Lin, F., Wu, W., Guo, R., Xing, J., Zhao, Z., Shpigelman, A., & Achmon, Y. (2023). Assessment of the influence of using green tea waste and fish waste as soil amendments for biosolarization on the growth of lettuce (Lactuca sativa L. var. ramosa Hort.). Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1174528
Çay atığı, Çarliston biberi (Capsicum annuum L.) yetiştiriciliğinde, büyüme ve verimi optimize etmek için umut verici yardımcı bir substrat mıdır?
Year 2024,
Volume: 55 Issue: 3, 183 - 192, 29.09.2024
Sürdürülebilir tarım ve atık yönetimi konusundaki artan endişelere yanıt olarak, bu çalışma, Çarliston biberi (Capsicum annuum) yetiştiriciliğinde çay atığının çevre dostu alternatif bir substrat olarak kullanılabilirliğini araştırmayı ve bu sayede bitki büyümesini ve verimini optimize ederek toprağa bağımlılığı azaltmayı, yetiştirme maliyetlerini düşürmeyi ve tarımsal sanayi atıklarını yeniden değerlendirmeyi amaçlamıştır. Bu amaçla, altı farklı substrat kombinasyonu değerlendirilmiştir: 1) Çay atığı, 2) Çay atığı + Gübre, 3) Çay atığı + Toprak, 4) Gübre + Toprak, 5) Çay atığı + Gübre + Toprak ve 6) Çay atığı + Gübre + Toprak + Perlit. Elde edilen veriler, uygulamalar arasında anlamlı farklılıkları değerlendirmek amacıyla hem çok değişkenli hem de tek değişkenli analizler kullanılarak incelenmiştir. Farklı substratlarda yetiştirilen bitkiler arasında gövde çapında anlamlı farklılıklar gözlenmiştir (tek yönlü MANOVA, p <.05). Ancak, bitki boyu ve klorofil içeriği substrat tipinden etkilenmemiştir. Yaprak yapısı uygulamalar arasında önemli farklılıklar göstermesine rağmen, kuru madde içeriğinde anlamlı bir fark gözlenmemiştir. Bu sonuçlar, özellikle diğer materyallerle kombine edildiğinde çay atığının, Çarliston biberi yetiştiriciliği için toprak bağımlılığını ve tarımsal sanayi atıklarını potansiyel olarak azaltabilecek sürdürülebilir bir substrat olduğunu göstermektedir.
Alkan, N., Terzi, Y., Khan, U., Bascinar, N., & Seyhan, K. (2019). Evaluation of seasonal variations in surface water quality of the Caglayan, Firtina and Ikizdere rivers from Rize, Turkey. Fresenius Environmental Bulletin, 28(12A), 9679-9688.
Anaya-Esparza, L. M., Mora, Z. V.-d. l., Vázquez-Paulino, O., Ascencio, F., & Villarruel-López, A. (2021). Bell Peppers (Capsicum annum L.) Losses and Wastes: Source for Food and Pharmaceutical Applications. Molecules, 26(17), 5341. Retrieved from https://www.mdpi.com/1420-3049/26/17/5341
Barathi, M., Kumar, A. S. K., Kodali, J., Mittal, S., Samhith, G. D., & Rajesh, N. (2017). Probing the Interaction between Fluoride and the Polysaccharides in Al(III)- and Zr (IV)-Modified Tea Waste by Using Diverse Analytical Characterization Techniques. ChemistrySelect, 2(31), 10123-10135. https://doi.org/10.1002/slct.201701774
Coman, V., Teleky, B.-E., Mitrea, L., Martău, G. A., Szabo, K., Călinoiu, L.-F., & Vodnar, D. C. (2020). Chapter Five - Bioactive potential of fruit and vegetable wastes. In F. Toldrá (Ed.), Advances in Food and Nutrition Research (Vol. 91, pp. 157-225): Academic Press.
da Silva Magalhães, D., Viegas, I. d. J. M., da Silva Barata, H., Costa, M. G., da Silva, B. C., & de Lima Mera, W. Y. W. (2023). Deficiencies of nitrogen, calcium, and micronutrients are the most limiting factors for growth and yield of smell pepper plants 1. Revista Ceres, 70(3), 125-135.
De Almeida, T., da Rosa, S., Oliveira, J., OLIVEIRA, A. d. S., da Silva, A., & PEREIRA, D. d. S. (2014). Influence of tannin on sorghum seed germination.
Debnath, B., Haldar, D., & Purkait, M. K. (2021). Potential and sustainable utilization of tea waste: A review on present status and future trends. Journal of Environmental Chemical Engineering, 9(5), 106179. https://doi.org/10.1016/j.jece.2021.106179
Duarah, P., Haldar, D., Singhania, R. R., Dong, C.-D., Patel, A. K., & Purkait, M. K. (2024). Sustainable management of tea wastes: resource recovery and conversion techniques. Critical Reviews in Biotechnology, 44(2), 255-274 https://doi.org/10.1080/07388551.2022.2157701
FAOSTAT. (2023). Food and agriculture data. Crops and livestock products. Available online: https://www.fao.org/faostat/en/#data (accessed on 09/09/2024).
Ho, C.-T., Lin, J.-K., & Shahidi, F. (2008). Tea and tea products: chemistry and health-promoting properties: 1st ed. Boca Raton: CRC press.
Hunde, N. F. (2020). Yield response and nutrient use efficiencies of hot pepper (Capsicum annuum L.) to inorganic fertilizers in Ethiopia: A review article. International Journal of Research in Agronomy, 3, 25-32.
Industry Research. (2022). Global “Tea Market” Research Report 2022-2027.
https://www.globenewswire.com/en/news-release/2022/03/24/2409291/0/en/Global-Tea-Market-Size-Share-Industry-Demand-2022-2027-Type-Green-Tea-Black-Tea-Oolong-Tea-Dark-Tea-Other-Growing-at-a-CAGR-of-6-4-Leading-Players-Updates-Emerging-Trends-Investmen.html
Kaliaperumal, V., Subramaniyan, V., Renganathan, S., Mohandoss, N., Hatamleh, A. A., Alnafisi, B. K., Kim, W., & Subramaniyan, P. (2023). Bioremediations analysis using multifactorial porous materials derived from tea residue. Environmental Research, 216, 114634. https://doi.org/10.1016/j.envres.2022.114634
Karataş, A. (2022). Effects of different agro-industrial waste as substrates on proximate composition, metals, and mineral contents of oyster mushroom (Pleurotus ostreatus). International Journal of Food Science & Technology, 57(3), 1429-1439. https://doi.org/10.1111/ijfs.15506
Kumar, V., Bhat, S. A., Kumar, S., Verma, P., Badruddin, I. A., Américo-Pinheiro, J. H. P., Sathyamurthy, R., & Atabani, A. E. (2023). Tea byproducts biorefinery for bioenergy recovery and value-added products development: A step towards environmental sustainability. Fuel, 350, 128811. https://doi.org/10.1016/j.fuel.2023.128811
Manyuchi, M., Mbohwa, C., & Muzenda, E. (2018). Biogas and Bio solids production from tea waste through anaerobic digestion. Paper presented at the Proceedings of the International Conference on Industrial Engineering and Operations Management.
Nahed, M., El-Sayeda, H., El‑Badawy, M., & Hager, I. T. (2015). Response of sweet pepper plants to some organic and bio-fertilizers and its effect on fruit yield and quality. Middle East J. Agric. Res, 4(3), 435-445.
Pane, C., Palese, A. M., Spaccini, R., Piccolo, A., Celano, G., & Zaccardelli, M. (2016). Enhancing sustainability of a processing tomato cultivation system by using bioactive compost teas. Scientia Horticulturae, 202, 117-124. https://doi.org/10.1016/j.scienta.2016.02.034
Peksen, A., & Yakupoglu, G. (2009). Tea waste as a supplement for the cultivation of Ganoderma lucidum. World Journal of Microbiology and Biotechnology, 25(4), 611-618. https://doi.org/10.1007/s11274-008-9931-z
Prabhu, L., Krishnaraj, V., Sathish, S., Gokulkumar, S., Karthi, N., Rajeshkumar, L., Balaji, D., Vigneshkumar, N., Elango, K. S., Karpagam, J., Vijayalakshmi, V. J., Gowarthan, E. R., & Jayakumar, H. (2021). Experimental investigation on mechanical properties of flax/banana/ industrial waste tea leaf fiber reinforced hybrid polymer composites. Materials Today: Proceedings, 45, 8136-8143. https://doi.org/10.1016/j.matpr.2021.02.111
Ratnaji, T., & Kennedy, L. J. (2020). Hierarchical porous carbon derived from tea waste for energy storage applications: Waste to worth. Diamond and Related Materials, 110, 108100. https://doi.org/10.1016/j.diamond.2020.108100
Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512-531. https://doi.org/10.1111/1541-4337.12330
Samtiya, M., Aluko, R. E., Dhewa, T., & Moreno-Rojas, J. M. (2021). Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods, 10(4), 839. Retrieved from https://www.mdpi.com/2304-8158/10/4/839
Seth, D., Athparia, M., Singh, A., Rathore, D., Venkatramanan, V., Channashettar, V., Prasad, S., Maddirala, S., Sevda, S., & Kataki, R. (2023). Sustainable environmental practices of tea waste—a comprehensive review. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-30848-3
Shi, J., Yang, G., You, Q., Sun, S., Chen, R., Lin, Z., Simal-Gandara, J., & Lv, H. (2023). Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021). Critical Reviews in Food Science and Nutrition, 63(20), 4757-4784. https://doi.org/10.1080/10408398.2021.2007353
Sial, T. A., Liu, J., Zhao, Y., Khan, M. N., Lan, Z., Zhang, J., Kumbhar, F., Akhtar, K., & Rajpar, I. (2019). Co-Application of Milk Tea Waste and NPK Fertilizers to Improve Sandy Soil Biochemical Properties and Wheat Growth. Molecules, 24(3), 423. Retrieved from https://www.mdpi.com/1420-3049/24/3/423
Sökmen, M., Demir, E., & Alomar, S. Y. (2018). Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. The Journal of Supercritical Fluids, 133, 171-176. https://doi.org/10.1016/j.supflu.2017.09.027
Sui, W., Xiao, Y., Liu, R., Wu, T., & Zhang, M. (2019). Steam explosion modification on tea waste to enhance bioactive compounds' extractability and antioxidant capacity of extracts. Journal of Food Engineering, 261, 51-59. https://doi.org/10.1016/j.jfoodeng.2019.03.015
Wang, Y.-J., Li, T.-H., Jin, G., Wei, Y.-M., Li, L.-Q., Kalkhajeh, Y. K., Ning, J.-M., & Zhang, Z.-Z. (2020). Qualitative and quantitative diagnosis of nitrogen nutrition of tea plants under field condition using hyperspectral imaging coupled with chemometrics. Journal of the Science of Food and Agriculture, 100(1), 161-167. https://doi.org/10.1002/jsfa.10009
Wang, Z., Ahmad, W., Zhu, A., Zhao, S., Ouyang, Q., & Chen, Q. (2024). Recent advances review in tea waste: High-value applications, processing technology, and value-added products. Science of the Total Environment, 946, 174225. https://doi.org/10.1016/j.scitotenv.2024.174225
Wasewar, K. L., Atif, M., Prasad, B., & Mishra, I. M. (2009). Batch adsorption of zinc on tea factory waste. Desalination, 244(1), 66-71. https://doi.org/10.1016/j.desal.2008.04.036
Wong, M., Sirisena, S., & Ng, K. (2022). Phytochemical profile of differently processed tea: A review. Journal of Food Science, 87(5), 1925-1942. https://doi.org/10.1111/1750-3841.16137
Zou, Y., Qiu, B., Lin, F., Wu, W., Guo, R., Xing, J., Zhao, Z., Shpigelman, A., & Achmon, Y. (2023). Assessment of the influence of using green tea waste and fish waste as soil amendments for biosolarization on the growth of lettuce (Lactuca sativa L. var. ramosa Hort.). Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1174528
Karataş, A. (2024). Is Tea Waste A Promising Co-substrate for Optimizing The Cultivation, Growth, and Yield of Charleston Pepper (Capsicum annuum L.)?. Research in Agricultural Sciences, 55(3), 183-192. https://doi.org/10.17097/agricultureatauni.1516367