Research Article
BibTex RIS Cite

Kırmızı Bahçe Patlıcanı (Solanum aethiopicum) İle İlişkili Nematodların İncelenmesi ve Etkili Yönetim için Toprak İlavelerinin Uygulanması

Year 2025, Volume: 56 Issue: 3, 227 - 233, 26.09.2025
https://doi.org/10.17097/agricultureatauni.1584215

Abstract

Nematod enfeksiyonları, patlıcan gibi ürünlere ciddi zararlar vermektedir. Nematodların kırmızı patlıcan (scarlet eggplant) üzerindeki etkilerine dair bilgiler sınırlıdır. Bu çalışma, bahçe patlıcanlarında toprak ilavelerinin toprak nematodlarının popülasyon yoğunlukları üzerindeki etkisini araştırmıştır. Çalışmada tekrarlanan uygulamalarla tamamen rastgele blok deneme deseni kullanılmıştır. Denemeler, Meloidogyne, Hoplolaimus, Helicotylenchus ve Pratylenchus olmak üzere dört nematod türü ile bulaşık bir tarlada yürütülmüştür. Parsel başına nematod sayıları çıkarılmış, bitki boyu şerit metre ile ölçülmüş ve yaprak sayısı sayılmıştır. Biochar (10 ton ha-1 (%100)), bu nematodların kontrolünde en etkili olan uygulama olmuştur. Bunu %100 oranında inek gübresi ve Bauhinia purpurea, ardından %50 oranında (5 ton ha-1) inek gübresi ve %50 Bauhinia sp. takip etmiştir. Hoplolaimus sp. en çok çoğalan veya en çok hayatta kalan tür olmuş, özellikle de %50 biochar üzerinde; bunu %50 Bauhinia sp. üzerinde Pratylenchus sp. izlemiştir. Tüm uygulamalarda benzer nematod popülasyonları gözlenmiştir. Dikimden 3 hafta sonra (WAT), %50 inek gübresi, %100 Bauhinia sp. ve %50 Bauhinia sp. kontrol grubuna kıyasla daha uzun bitkiler üretmiştir. Dikimden 5 hafta sonra, en uzun bitkileri %50 inek gübresi sağlamış, bunu sırasıyla %100 Bauhinia sp., %50 Bauhinia sp., ardından %50 ve %100 biochar izlemiştir. Dikimden 3 hafta sonra, biochar hariç tüm organik kontrol ajanları kontrolden daha iyi performans göstermiştir. Dikimden 4 hafta sonra, %50 biochar hariç tüm organik kontrol ajanları kontrol grubundan daha iyi performans göstermiştir. Son olarak, dikimden 5 hafta sonra en iyi kontrol materyali %100 inek gübresi olmuş, bunu %100 Bauhinia sp., %50 Bauhinia sp., %100 biochar ve %50 inek gübresi izlemiştir. Bu toprak ilavelerinin tamamı önerilmektedir.

Thanks

thanks a lot

References

  • Abd Elgawad M. M. M. (2021). Biological control of nematodes infecting eggplant in Egypt. Bulletin of National Research Centre, 45, 6. https://doi.org/ 10.1186/s42269-020-00463-0
  • Abolusoro, S. A., Abe, M. O., Abolusoro, P. F., & Izuogu, N. B. (2013). Control of nematode disease of eggplant (Solanum aethiopicum L.) using manure. Agriculturae Conspectus Scientificus, 78(4), 327-330. https://hrcak.srce.hr/117944
  • Aida, A., Taryono, A., & Siwi, I. (2021). Response of ındonesian eggplants due to nematode attack and genetic diversity revealed by SSR marker. Proceedings of the 2nd International Conference on Smart and Innovative Agriculture (ICoSIA 2021). Advances in Biological Sciences Research, 19.
  • Aji, M. B. (2024). Use of plant material in the management of plant parasitic nematodes. In: Soumalya Mukherjee and Sajal Ray. Nematodes - ecology, adaptation and parasitism. Open Access Peer-Reviewed Chapter. https://doi.org/10.5772/intechopen.1002742
  • Akin-Osanaiye, B. C., Hassan, A., & Abodunde, C. A. (2024). Comparative analysis of the nutrient and anti-nutrient compositions of five different African eggplants. International Journal of Food, Agriculture and Natural Resources, 5(2), 1-9. https://doi.org/10.46676/ij-fanres.v5i2.230
  • Bhaskar, B., Ramesh Kumar, P. (2015). Genetically modified (GM) crop face an uncertain future in India: brinjal appraisal – A perspective. Annual Plant Science, 4(2), 960-975. https://www.annalsofplantsciences.com/index.php/aps/article/view/167/0
  • Campos, D. P., Furlanetto, C., Stein, V. C., Noronha, C. B., Duarte, J. M., & Dallemole-Giaretta, R. (2022). Nematicidal activity of Melia azedarach extracts on Meloidogyne incognita. Crop Protection, 152, 105793
  • Coyne, D. L., Cortada, L., Dalzell, J. J., Claudius-Cole, A. O., Haukeland, S., Luambano, N., & Talwana, H. (2018). Plant-parasitic nematodes and food security in Sub-Saharan Africa. Annual Review of Phytopathology, 56, 381 – 403. https://doi.org/10.1146/annurev-phyto-080417-045833
  • FAOSTAT. (2012). Final 2012 data and preliminary 2013 data for 5 major commodity aggregates. http://faostat.fao.org/site/339/default.aspx
  • FAOSTAT. (2015). Eggplants (aubergine). http://data.un.org. Rome
  • FAOSTAT. (2022). Eggplants (aubergine). http://data.un.org
  • Fekry, I. M., El-Haddad, A. F., & El-Gendi, A. Y. (2021). Nematicidal potentiality of some wild Egyptian marigold (Tagetes spp.) essential oils against the root-knot nematode (Meloidogyne incognita) and its role in the management of this nematode in tomato plants. Archives of Phytopathology and Plant Protection, 54(7-8), 447-463
  • Fontem, L. A., Chikoye, D., Fokunang, C., & Ndifon, E. M. (2014). Weeds as potential biopesticides in taro leaf blight disease management. Research Application Summary. pages 313–316. Fourth RUFORUM Biennial Regional Conference 21-25 July 2014, Maputo, Mozambique. https://www.ruforum.org/sites/default/files/Fontem.pdf
  • Gaku, M., Taketo, U., Hyoung, J. L., Masaharu, M., Yasuhiro, K., Yoshimi, S., Takeo, S., & Kenta, U. (2022). Solanum palinacanthum Dunal as a potential eggplant rootstock resistant to root-knot nematodes. Journal of Phytopathology, 170(3), 185-193. https://doi.org/10.1 111/jph.13067
  • Gulwaiz, A. & Tabreiz, A. K. (2018). Response of brinjal (Solanum melongena L.) varieties for resistance against root-knot nematode, Meloidogyne incognita race-1. The Journal of Phytopharmacology, 7(2), 222-224. www.phytopharmajournal.com
  • Jalal, H. S. I., Salam, M. S., Akram, M., Shorsh, M. F., & Hazhar, A. (2017). Control of root-knot nematode of eggplant and its effect on plant growth and yield under plastic house condition. International Journal of Forest and Horticulture, 3(2), 28-34. http://dx.doi.org/10.20431/2 454-9487.0302004
  • Mamman, A. (2023). Nematicidal activity of Ageratum conyzoides leaf extracts against root knot nematodes (Meloidogyne javanica) on eggplant in Jalingo, Nigeria. Dutse Journal of Pure and Applied Science, 9(3b), 120-128. https://doi.org/10.4314/dujopas.v9i3b.13
  • Mukasa, N. Z. & Ramathani, I. (2013). Root-knot nematode on African eggplant and cowpea. PlantwisePlus Knowledge Bank Pest Management. https://doi.org/10.1079/pwkb.20187800510
  • Mukasa, N. Z., & Ramathani, I. (2018). Root-knot nematode on African eggplant and cowpea. PlantwisePlus. Pest Management Decision Guides, 20187800510. https://doi.org/10.1079/pwkb.20187800510
  • Ndifon, E. M. (2013). Evaluation of some soil amendments for the management of root knot nematode (Meloidogyne incognita) on grapevine (Vitis vinifera L.) in Zaria, Nigeria. Advances in Agriculture, Science and Engineering Research, 3(9), 1145-1150. http://www.ejournal.sedinst.com.
  • Ndifon, E.M. (2019). Concomitant and single infection with Fusarium oxysporum and Meloidogyne incognita on wilt of African garden egg (Solanum aethiopicum L.) and its management in Makurdi, Nigeria. PhD thesis. University of Agriculture, Makurdi, Nigeria. 214 p.
  • Ndifon, E. M. (2024). Nematode populations affect grapevine seedlings: Understanding the host-parasite interaction is critical for preventing negative effects. Revista de Investigaciones Agropecuarias (RIA) Argentina. https://doi.org/10.58149/febd-2q06
  • Ndifon, M., Chiv, M., Inyang, P., Ankrumah, E., Emeka, C. P. O., & Chinaka, I. (2022). Inhibition of Fusarium oxysporum wilt of scarlet eggplant (Solanum aethiopicum) using plant extracts. Notulae Scientia Biologicae, 14(2), 10912. https://doi.org/10.55779/nsb14210912
  • Noling, J. W. (2019). Nematode management in tomatoes, peppers, and eggplant. ENY-032_NG032_Nematode Management in Tomatoes, Peppers, and Eggplant.htm. https://edis.ifas.ufl.edu
  • Olabiyi, T. I. (2008). Pathogenicity study and nematotoxic properties of some plant extracts on the root-knot nematode pest of tomato, Lycopersicon esculentum (L.) Mill. Plant Pathology Journal, 7, 45-49. https://doi.org/10.3923/ppj.2008.45.49
  • Olabiyi, T. I., Akanbi, W. B., & Adepoju, I. O. (2007). Control of certain nematode pests with organic manure on cowpea. American-Eurasian Journal of Agriculture, Environment and Science, 5(2), 523-527. https://www.researchgate.net/profile/Adepoju-Olusesan/publication/346133290_Control_of_Certain_Nematode_Pests_With_Different_Organic_Manure_on_Cowpea/links/5fbc61b892851c933f51994e/Control-of-Certain-Nematode-Pests-With-Different-Organic-Manure-on-Cowpea.pdf
  • Onkendi, E. M., Kariuki, G. M., Marais, M., & Moleleki, L. N. (2014). The threat of root-knot nematodes (Meloidogyne spp.) in Africa: a review. Plant Pathology, 63(4), 727-737. https://doi.org/10.1111/ppa.12202 Oso, A. A. (2020). Vegetable production and nematodes infestation: Impacts on small-scale farming communities of South Africa. World Journal of Advanced Research and Reviews, 7(2), 168-177. https://doi.org/10.30574/wjarr. 2020.7.2.0211
  • Rizvi, R., Mahmood, I., Tiyagi, S. A., & Khan, Z. (2012). Effect of some botanicals for the management of plant-parasitic nematodes and soil-inhabiting fungi infesting chickpea. Turkey Journal of Agriculture and Forestry, 36, 710-719. https://doi.org/10.3906/tar-1201-45
  • Sulaiman, A., Chindo, P. S., Agbenin, N. O., Onu, I., & Bulus, J. (2019). Effect of inoculum density of Meloidogyne incognita on the growth and yield of eggplant (Solanum L. species) in Zaria, Sudan Savannah of Nigeria. Journal of Agriculture and Environment, 15(1), 127-136. https://www.ajol.info/index.php/jagrenv/article/view/235050.
  • Tanimola, A. A., & Godwin-Egein, M. I. (2011). Plant-parasitic nematodes associated with garden egg (Solanum aethiopicum) in Obio-Akpor LGA, Rivers State, Nigeria. Pakistan Journal Nematology, 29(2), 139-140. https://worldveg.tind.io/record/47950?ln=en
  • Tian, Y., Wang, X., Qiao, K., Han, Y., & Li, X. (2020). Effect of different Brassica spp. residues on the activity of root-knot nematode (Meloidogyne incognita) and nematode community in soil. Plant Disease 104(6), 1643-1652
  • Touré, B. K., Yattara, I., Maïga, Y., Kollo, A. I., Adamou, H., & Maïga, M. (2021). Interaction between the root-knot nematode, Meloidogyne incognita and the damping-off agent, Pythium aphanidermatum on African eggplant under shelter. International Journal of Bioscience 18(5), 115-123. http://dx.doi.org/10.12692/ijb/18.5.115-123
  • Uddin, J., Ullah, F., Naz, I., Ahmad, S., Saljoqi, A., Khan, S. S., & Salim, M. (2023). Root-knot nematode pathogen suppression in eggplant using antagonistic fungi. Egyptian Journal of Biology and Pest Control, 33, Art. 15. https://ejbpc.springeropen.com/articles/10.1186/s41938-023-00659-2
  • Wikipedia. (2025). List of countries by eggplant production. https://en.wikipedia.org/wiki/List_of_countries_by_eggplant_production#:~:text=This%20is%20a%20list%20of,from%2058%2C705%2C398%20tonnes%20in%202021.
  • World Population Review. (2025). Eggplant production by country 2025. https://worldpopulationreview.com/country-rankings/eggplant-production-by-country

Explore the Nematodes Associated with Scarlet Garden Eggplant (Solanum aethiopicum) and Implement Soil Amendment for Effective Management

Year 2025, Volume: 56 Issue: 3, 227 - 233, 26.09.2025
https://doi.org/10.17097/agricultureatauni.1584215

Abstract

Nematode infections cause severe damage to crops like eggplants. Information on the effects of nematodes on scarlet eggplant is rare. This study investigated the effect of soil amendments on soil nematodes population densities under garden eggplants. The completely randomized block design with replicated treatments was utilized. The trials were conducted in a field infested with four nematode species: Meloidogyne, Hoplolaimus, Helicotylenchus, and Pratylenchus. Number of nematodes per plot were extracted, plant height was measured with tape, and number of leaves were counted. Biochar (10 tons ha-1 (100%)) excelled in the control of these nematodes, followed by cow dung (100%) and Bauhinia purpurea (100%), then cow dung (5 tons ha-1 (50%)), and Bauhinia sp. (50%). Hoplolaimus sp. multiplied or survived most, particularly on biochar (50%) followed by Pratylenchus sp. on Bauhinia sp. (50%). All treatments had similar nematode populations. At 3 weeks after transplanting (WAT), cow dung 50%, Bauhinia sp. 100%, and Bauhinia sp. 50% induced the production of taller plants than the control. At 5 WAT, cow dung 50% was the best material for producing taller plants followed by Bauhinia sp. 100% and Bauhinia sp. 50% then biochar (50 and 100%). At 3 WAT, all organic control agents performed better than control, except for biochar. At 4 WAT, all the organic control agents except biochar 50% performed better than control. Finally, at 5 WAT best control material was cow dung 100% followed by Bauhinia sp. (100%), Bauhinia sp. (50%), biochar (100%), and cow dung (50%). These amendments are all recommended.

References

  • Abd Elgawad M. M. M. (2021). Biological control of nematodes infecting eggplant in Egypt. Bulletin of National Research Centre, 45, 6. https://doi.org/ 10.1186/s42269-020-00463-0
  • Abolusoro, S. A., Abe, M. O., Abolusoro, P. F., & Izuogu, N. B. (2013). Control of nematode disease of eggplant (Solanum aethiopicum L.) using manure. Agriculturae Conspectus Scientificus, 78(4), 327-330. https://hrcak.srce.hr/117944
  • Aida, A., Taryono, A., & Siwi, I. (2021). Response of ındonesian eggplants due to nematode attack and genetic diversity revealed by SSR marker. Proceedings of the 2nd International Conference on Smart and Innovative Agriculture (ICoSIA 2021). Advances in Biological Sciences Research, 19.
  • Aji, M. B. (2024). Use of plant material in the management of plant parasitic nematodes. In: Soumalya Mukherjee and Sajal Ray. Nematodes - ecology, adaptation and parasitism. Open Access Peer-Reviewed Chapter. https://doi.org/10.5772/intechopen.1002742
  • Akin-Osanaiye, B. C., Hassan, A., & Abodunde, C. A. (2024). Comparative analysis of the nutrient and anti-nutrient compositions of five different African eggplants. International Journal of Food, Agriculture and Natural Resources, 5(2), 1-9. https://doi.org/10.46676/ij-fanres.v5i2.230
  • Bhaskar, B., Ramesh Kumar, P. (2015). Genetically modified (GM) crop face an uncertain future in India: brinjal appraisal – A perspective. Annual Plant Science, 4(2), 960-975. https://www.annalsofplantsciences.com/index.php/aps/article/view/167/0
  • Campos, D. P., Furlanetto, C., Stein, V. C., Noronha, C. B., Duarte, J. M., & Dallemole-Giaretta, R. (2022). Nematicidal activity of Melia azedarach extracts on Meloidogyne incognita. Crop Protection, 152, 105793
  • Coyne, D. L., Cortada, L., Dalzell, J. J., Claudius-Cole, A. O., Haukeland, S., Luambano, N., & Talwana, H. (2018). Plant-parasitic nematodes and food security in Sub-Saharan Africa. Annual Review of Phytopathology, 56, 381 – 403. https://doi.org/10.1146/annurev-phyto-080417-045833
  • FAOSTAT. (2012). Final 2012 data and preliminary 2013 data for 5 major commodity aggregates. http://faostat.fao.org/site/339/default.aspx
  • FAOSTAT. (2015). Eggplants (aubergine). http://data.un.org. Rome
  • FAOSTAT. (2022). Eggplants (aubergine). http://data.un.org
  • Fekry, I. M., El-Haddad, A. F., & El-Gendi, A. Y. (2021). Nematicidal potentiality of some wild Egyptian marigold (Tagetes spp.) essential oils against the root-knot nematode (Meloidogyne incognita) and its role in the management of this nematode in tomato plants. Archives of Phytopathology and Plant Protection, 54(7-8), 447-463
  • Fontem, L. A., Chikoye, D., Fokunang, C., & Ndifon, E. M. (2014). Weeds as potential biopesticides in taro leaf blight disease management. Research Application Summary. pages 313–316. Fourth RUFORUM Biennial Regional Conference 21-25 July 2014, Maputo, Mozambique. https://www.ruforum.org/sites/default/files/Fontem.pdf
  • Gaku, M., Taketo, U., Hyoung, J. L., Masaharu, M., Yasuhiro, K., Yoshimi, S., Takeo, S., & Kenta, U. (2022). Solanum palinacanthum Dunal as a potential eggplant rootstock resistant to root-knot nematodes. Journal of Phytopathology, 170(3), 185-193. https://doi.org/10.1 111/jph.13067
  • Gulwaiz, A. & Tabreiz, A. K. (2018). Response of brinjal (Solanum melongena L.) varieties for resistance against root-knot nematode, Meloidogyne incognita race-1. The Journal of Phytopharmacology, 7(2), 222-224. www.phytopharmajournal.com
  • Jalal, H. S. I., Salam, M. S., Akram, M., Shorsh, M. F., & Hazhar, A. (2017). Control of root-knot nematode of eggplant and its effect on plant growth and yield under plastic house condition. International Journal of Forest and Horticulture, 3(2), 28-34. http://dx.doi.org/10.20431/2 454-9487.0302004
  • Mamman, A. (2023). Nematicidal activity of Ageratum conyzoides leaf extracts against root knot nematodes (Meloidogyne javanica) on eggplant in Jalingo, Nigeria. Dutse Journal of Pure and Applied Science, 9(3b), 120-128. https://doi.org/10.4314/dujopas.v9i3b.13
  • Mukasa, N. Z. & Ramathani, I. (2013). Root-knot nematode on African eggplant and cowpea. PlantwisePlus Knowledge Bank Pest Management. https://doi.org/10.1079/pwkb.20187800510
  • Mukasa, N. Z., & Ramathani, I. (2018). Root-knot nematode on African eggplant and cowpea. PlantwisePlus. Pest Management Decision Guides, 20187800510. https://doi.org/10.1079/pwkb.20187800510
  • Ndifon, E. M. (2013). Evaluation of some soil amendments for the management of root knot nematode (Meloidogyne incognita) on grapevine (Vitis vinifera L.) in Zaria, Nigeria. Advances in Agriculture, Science and Engineering Research, 3(9), 1145-1150. http://www.ejournal.sedinst.com.
  • Ndifon, E.M. (2019). Concomitant and single infection with Fusarium oxysporum and Meloidogyne incognita on wilt of African garden egg (Solanum aethiopicum L.) and its management in Makurdi, Nigeria. PhD thesis. University of Agriculture, Makurdi, Nigeria. 214 p.
  • Ndifon, E. M. (2024). Nematode populations affect grapevine seedlings: Understanding the host-parasite interaction is critical for preventing negative effects. Revista de Investigaciones Agropecuarias (RIA) Argentina. https://doi.org/10.58149/febd-2q06
  • Ndifon, M., Chiv, M., Inyang, P., Ankrumah, E., Emeka, C. P. O., & Chinaka, I. (2022). Inhibition of Fusarium oxysporum wilt of scarlet eggplant (Solanum aethiopicum) using plant extracts. Notulae Scientia Biologicae, 14(2), 10912. https://doi.org/10.55779/nsb14210912
  • Noling, J. W. (2019). Nematode management in tomatoes, peppers, and eggplant. ENY-032_NG032_Nematode Management in Tomatoes, Peppers, and Eggplant.htm. https://edis.ifas.ufl.edu
  • Olabiyi, T. I. (2008). Pathogenicity study and nematotoxic properties of some plant extracts on the root-knot nematode pest of tomato, Lycopersicon esculentum (L.) Mill. Plant Pathology Journal, 7, 45-49. https://doi.org/10.3923/ppj.2008.45.49
  • Olabiyi, T. I., Akanbi, W. B., & Adepoju, I. O. (2007). Control of certain nematode pests with organic manure on cowpea. American-Eurasian Journal of Agriculture, Environment and Science, 5(2), 523-527. https://www.researchgate.net/profile/Adepoju-Olusesan/publication/346133290_Control_of_Certain_Nematode_Pests_With_Different_Organic_Manure_on_Cowpea/links/5fbc61b892851c933f51994e/Control-of-Certain-Nematode-Pests-With-Different-Organic-Manure-on-Cowpea.pdf
  • Onkendi, E. M., Kariuki, G. M., Marais, M., & Moleleki, L. N. (2014). The threat of root-knot nematodes (Meloidogyne spp.) in Africa: a review. Plant Pathology, 63(4), 727-737. https://doi.org/10.1111/ppa.12202 Oso, A. A. (2020). Vegetable production and nematodes infestation: Impacts on small-scale farming communities of South Africa. World Journal of Advanced Research and Reviews, 7(2), 168-177. https://doi.org/10.30574/wjarr. 2020.7.2.0211
  • Rizvi, R., Mahmood, I., Tiyagi, S. A., & Khan, Z. (2012). Effect of some botanicals for the management of plant-parasitic nematodes and soil-inhabiting fungi infesting chickpea. Turkey Journal of Agriculture and Forestry, 36, 710-719. https://doi.org/10.3906/tar-1201-45
  • Sulaiman, A., Chindo, P. S., Agbenin, N. O., Onu, I., & Bulus, J. (2019). Effect of inoculum density of Meloidogyne incognita on the growth and yield of eggplant (Solanum L. species) in Zaria, Sudan Savannah of Nigeria. Journal of Agriculture and Environment, 15(1), 127-136. https://www.ajol.info/index.php/jagrenv/article/view/235050.
  • Tanimola, A. A., & Godwin-Egein, M. I. (2011). Plant-parasitic nematodes associated with garden egg (Solanum aethiopicum) in Obio-Akpor LGA, Rivers State, Nigeria. Pakistan Journal Nematology, 29(2), 139-140. https://worldveg.tind.io/record/47950?ln=en
  • Tian, Y., Wang, X., Qiao, K., Han, Y., & Li, X. (2020). Effect of different Brassica spp. residues on the activity of root-knot nematode (Meloidogyne incognita) and nematode community in soil. Plant Disease 104(6), 1643-1652
  • Touré, B. K., Yattara, I., Maïga, Y., Kollo, A. I., Adamou, H., & Maïga, M. (2021). Interaction between the root-knot nematode, Meloidogyne incognita and the damping-off agent, Pythium aphanidermatum on African eggplant under shelter. International Journal of Bioscience 18(5), 115-123. http://dx.doi.org/10.12692/ijb/18.5.115-123
  • Uddin, J., Ullah, F., Naz, I., Ahmad, S., Saljoqi, A., Khan, S. S., & Salim, M. (2023). Root-knot nematode pathogen suppression in eggplant using antagonistic fungi. Egyptian Journal of Biology and Pest Control, 33, Art. 15. https://ejbpc.springeropen.com/articles/10.1186/s41938-023-00659-2
  • Wikipedia. (2025). List of countries by eggplant production. https://en.wikipedia.org/wiki/List_of_countries_by_eggplant_production#:~:text=This%20is%20a%20list%20of,from%2058%2C705%2C398%20tonnes%20in%202021.
  • World Population Review. (2025). Eggplant production by country 2025. https://worldpopulationreview.com/country-rankings/eggplant-production-by-country
There are 35 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Elias Ndifon 0000-0001-6027-4714

Ayeoffe Lum 0000-0002-9834-1705

Julius Amabo This is me 0009-0004-0042-9752

Publication Date September 26, 2025
Submission Date December 2, 2024
Acceptance Date September 3, 2025
Published in Issue Year 2025 Volume: 56 Issue: 3

Cite

APA Ndifon, E., Lum, A., & Amabo, J. (2025). Explore the Nematodes Associated with Scarlet Garden Eggplant (Solanum aethiopicum) and Implement Soil Amendment for Effective Management. Research in Agricultural Sciences, 56(3), 227-233. https://doi.org/10.17097/agricultureatauni.1584215

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29919