Research Article
BibTex RIS Cite

Vektör Uzaylarının Öğretimi İçin Tasarlanan Öğrenme Ortamına İlişkin Görüşlerin İncelenmesi

Year 2022, , 957 - 983, 30.09.2022
https://doi.org/10.17240/aibuefd.2022..-971969

Abstract

Bu çalışmanın amacı, öğretmen adayı ve dersi veren öğretmenin, vektör uzayları konusunun öğretimi için tasarlanan öğrenme ortamına ilişkin görüşlerini belirlemektir. Araştırma nitel bir çalışma olup, öğrenme ortamı, tasarım tabanlı araştırma yöntemi kullanılarak 3 döngü olarak tasarlanmış ve üçüncü döngünün sonunda öğretmen adayları ve uygulama öğretmeninin öğrenme ortamına ilişkin görüşleri ortaya konulmaya çalışılmıştır. Araştırmanın çalışma grubunu ortaöğretim matematik öğretmenliği bölümünde öğrenim gören 11 ikinci sınıf öğretmen adayı ve bir uygulama öğretmeni oluşturmaktadır. Öğretmen adayları ve uygulama öğretmeninin öğrenme ortamına ilişkin görüşlerini belirlemede veri toplama aracı olarak yarı yapılandırılmış mülakat tekniği kullanılmıştır. Mülakatlarda, öğretmen adayları ve uygulama öğretmeninden tasarlanan öğrenme ortamını, temel bileşenleri ve derse ilişkin motivasyonları açısından değerlendirmeleri istenmiştir. Mülakatlardan elde edilen verilerin analizinde içerik analizi tekniği kullanılmıştır. Araştırma sonuçları, tasarlanan öğrenme ortamının, öğretmen adaylarının vektör uzayları konusunda yaşadıkları formalizm zorluğundan kurtulmalarına yardımcı olduğunu; derste aktif olma, düzenli çalışma ve daha kolay öğrenme gibi fırsatlar sunduğunu göstermiştir. Ayrıca, hazırlanan öğrenme ortamının bir parçası olan ödevlerin, öğretmen adaylarının not kaygısından kaynaklanan sınav stresini azalttığını ve öğretmen adaylarının genelde lineer cebirde, özelde ise vektör uzaylarında sahip olması gereken düşünme biçimini sergilemesinde etkili olduğunu göstermiştir. Tasarlanan öğrenme ortamının, sağlamış olduğu fırsatlar göz önüne alındığında gerek vektör uzaylarının gerekse vektör uzaylarına ilişkin belirli kavramlarının öğretiminde uygulanması önerilmektedir.

References

  • Açıkyıldız, G. & Kösa, T. (2021). Creating design principles of a learning environment for teaching vector spaces. Turkish Journal of Computer and Mathematics Education, 12(1), 244-289.
  • Alves Dias, M. & Artigue, M. (1995). Articulation problems between different systems of symbolic representations in linear algebra. In The Proceedings of PME19, 3(2), 34-41.
  • Britton, S. & Henderson, J. (2009). Linear algebra revisited: An attempt to understand students’ conceptual difficulties. International Journal of Mathematical Education in Science and Technology, 40(7), 963–974.
  • Çelik, D. (2015). Investigating students’ modes of thinking in linear algebra: The case of linear independence. International Journal for Mathematics Teaching and Learning, 16(1). Retrieved January 20, 2015 from http://www.cimt.org.uk/journal/index.htm. Doğan-Dunlap, H. (2010). Linear algebra students’ modes of reasoning: Geometric representations. Linear Algebra and Its Applications, 432, 2141–2159.
  • Donevska-Todorova, A. (2018). Fostering students’ competencies in linear algebra with digital resources. In S. Stewart, C. Andrews-Larson, A. Berman & M. Zandieh (Ed.) Challenges and Strategies in Teaching Linear Algebra (pp. 261-276). Hamburg: Springer International Publishing.
  • Dorier, J. L. (1995). Meta level in the teaching of unifying and generalizing concepts in mathematics. Educational Studies in Mathematics, 29, 175–197.
  • Dorier, J. L. (1998). The role of formalism in the teaching of the theory of vector spaces. Linear Algebra and its Applications (275), 14, 141–160.
  • Dorier, J. L. (2000). On the teaching of linear algebra. Dordrecht: Kluwer Academic.
  • Dorier, J. L., Robert, A., Robinet, J. and Rogalski, M. (2000). The obstacle of formalism in linear algebra. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 85–124). Dordrecht: Kluwer Academic.
  • Dreyfus, T. and Hillel, J. (1998). Reconstruction of meanings for function approximation. International Journal of Computers for Mathematical Learning, 3, 93-112.
  • Hadded, M. (1999). Difficulties in the learning and teaching of linear algebra-a personal experience (Unpublished master’s thesis). Concordia University, Canada.
  • Harel, G. (1987). Variations in linear algebra content presentations. For the Learning of Mathematics, 7(3), 29-32.
  • Harel, G. (1989a). Learning and teaching linear algebra: Difficulties and an alternative approach to visualizing concepts and processes, Focus on Learning Problems in Mathematics 11, 139-148.
  • Harel, G. (1989b). Applying the principle of multiple embodiments in teaching linear algebra: Aspects of familiarity and mode of representation, School Science and Mathematics, 89, 49-57.
  • Harel, G. (2000). Principles of learning and teaching of linear algebra: Old and new observations. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 177-189). Dordrecht: Kluwer Academic Publishers.
  • Herrington, J. A., McKenney, S., Reeves, T. C. and Oliver, R. (2007). Design-based research and doctoral students: Guidelines for preparing a dissertation proposal. In C. Montgomerie & J. Seale (Eds.), Proceedings of EdMedia 2007: World Conference on Educational Multimedia, Hypermedia & Telecommunications (pp. 4089-4097). Chesapeake, VA: AACE.
  • Hillel, J. and Sierpinska, A. (1994). On one persistent mistake in linear algebra. The Proceedings PME 18, 2, 65-72.
  • Hillel, J. (2000). Modes of description and the problem of representation in linear algebra. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 191-207). Dordrecht: Kluwer Academic Publishers.
  • Hristovitch, S.P. (2001). Students’ conception of introductory linear algebra notions: The role of metaphors, analogies and symbolization (Unpublished doctoral dissertation). Purdie University, USA.
  • Klasa, J. (2009). A few pedagogical designs in linear algebra with Cabri and Maple. Linear Algebra and its Applications, 432, 2100–2111. Konyalıoğlu, A. C. (2003). Üniversite düzeyinde vektör uzayları ile ilgili kavramların anlaşılmasında görselleştirme yaklaşımının etkinliğinin incelenmesi (Doktora tezi). Atatürk Üniversitesi.
  • Kolman, B. and Hill, D.R. (2008). Elementary linear algebra and its applications (9th ed.). New Jersey: Pearson Prentice Hall.
  • Kuzu, A., Çankaya, S. ve Mısırlı, A. (2011). Tasarım tabanlı araştırma ve öğrenme ortamlarının tasarımı ve geliştirilmesinde kullanımı. Anadolu Journal of Educational Sciences International, 1(1), 19-35.
  • Medina, E. (2000). Student understanding of span, linear independence, and basis in an elementary algebra class (Unpublished doctoral dissertation). University of Northern Colorado, USA.
  • Nardi, E. (1997). The novice mathematician’s encounter with mathematical abstraction: A concept image of spanning sets in vectorial analysis. Educación Matemática, 91(1), 47-60.
  • Pecuch-Herrero, M. (2000). Strategies and computer projects for teaching linear algebra. International Journal of Mathematical Education in Science and Technology, 31, 181-186.
  • Reeves, T. C. (2000, April). Enhancing the worth of instructional technology research through "design experiments" and other development research strategies. Paper presented at the International Perspectives on Instructional Technology Research for the 21st Century, New Orleans, LA.
  • Robert, A. and Robinet, J. (1989). Quelques résultats sur l'apprentissage de l'algèbre linéaire en première année de DEUG, Cahier de Didactique des Mathématiques nº53, IREM de Paris VII.
  • Sierpinska, A. (2000). On some aspects of students’ thinking in linear algebra. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 209-246). Dordrecht: Kluwer Academic Publishers.
  • Soylu, Y. (2005). Lineer dönüşümler ve lineer dönüşümlerle ilgili kavramların öğretilmesinde geometri ile somutlaştırma yönteminin etkinliği (Doktora tezi). Atatürk Üniversitesi.
  • Stewart, S. (2008). Understanding linear algebra concepts through the embodied symbolic and formal worlds of mathematical thinking (Unpublished doctoral dissertation). Auckland University, New Zelland
  • Stewart, S. and Thomas, M. O. J. (2010). Student learning of basis, span and linear independence in linear algebra. International Journal of Mathematical Education in Science and Technology, 41(2), 173–188.
  • Wang, F. and Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research and Development, 53(4), 5-23.
  • Yıldırım, A. ve Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri (5. baskı). Ankara: Seçkin Yayıncılık.
  • Yildirim, A., & Simsek, H. (2011). Sosyal Bilimlerde Nitel Arastirma YOntemleri (8th ed.). Ankara: Seckin Yayinevi.

Investigation of Views Regarding The Learning Environment Designed For Teaching Vector Spaces

Year 2022, , 957 - 983, 30.09.2022
https://doi.org/10.17240/aibuefd.2022..-971969

Abstract

The aim of this study is to determine the views of pre-service teachers and lecturer about the learning environment designed for teaching vector spaces. The research is a qualitative study. The learning environment was designed as 3 cycles using the design-based research method, and at the end of the third cycle, the views of pre-service teachers and lecturer about the learning environment were revealed. The study group of research consists of 11 second grade pre-service mathematics teachers studying in department of secondary mathematics education and a lecturer. Semi-structured interviews were used as a data collection tool to reveal the views of pre-service teachers and lecturer about learning environment. During interviews, pre-service teachers and lecturer were asked questions under the topics of learning environment, GeoGebra software, tasks, worksheets, group work and motivation. Content analysis technique was used in the analysis of the data obtained from the interviews. The results of the study showed that designed learning environment helped pre-service teachers to overcome the formalism difficulties and offered opportunities such as concretization, being active, regular study and easier learning. In addition, it has been shown that tasks, which is a part of the designed learning environment, reduces the exam stresses of pre-service teachers due to grade anxiety and is effective in demonstrating the way of thinking that pre-service teachers should have in linear algebra in general and in vector spaces in particular. Considering the opportunities it provides, it is suggested that the designed learning environment should be used in teaching both vector spaces and certain concepts related to vector spaces.

References

  • Açıkyıldız, G. & Kösa, T. (2021). Creating design principles of a learning environment for teaching vector spaces. Turkish Journal of Computer and Mathematics Education, 12(1), 244-289.
  • Alves Dias, M. & Artigue, M. (1995). Articulation problems between different systems of symbolic representations in linear algebra. In The Proceedings of PME19, 3(2), 34-41.
  • Britton, S. & Henderson, J. (2009). Linear algebra revisited: An attempt to understand students’ conceptual difficulties. International Journal of Mathematical Education in Science and Technology, 40(7), 963–974.
  • Çelik, D. (2015). Investigating students’ modes of thinking in linear algebra: The case of linear independence. International Journal for Mathematics Teaching and Learning, 16(1). Retrieved January 20, 2015 from http://www.cimt.org.uk/journal/index.htm. Doğan-Dunlap, H. (2010). Linear algebra students’ modes of reasoning: Geometric representations. Linear Algebra and Its Applications, 432, 2141–2159.
  • Donevska-Todorova, A. (2018). Fostering students’ competencies in linear algebra with digital resources. In S. Stewart, C. Andrews-Larson, A. Berman & M. Zandieh (Ed.) Challenges and Strategies in Teaching Linear Algebra (pp. 261-276). Hamburg: Springer International Publishing.
  • Dorier, J. L. (1995). Meta level in the teaching of unifying and generalizing concepts in mathematics. Educational Studies in Mathematics, 29, 175–197.
  • Dorier, J. L. (1998). The role of formalism in the teaching of the theory of vector spaces. Linear Algebra and its Applications (275), 14, 141–160.
  • Dorier, J. L. (2000). On the teaching of linear algebra. Dordrecht: Kluwer Academic.
  • Dorier, J. L., Robert, A., Robinet, J. and Rogalski, M. (2000). The obstacle of formalism in linear algebra. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 85–124). Dordrecht: Kluwer Academic.
  • Dreyfus, T. and Hillel, J. (1998). Reconstruction of meanings for function approximation. International Journal of Computers for Mathematical Learning, 3, 93-112.
  • Hadded, M. (1999). Difficulties in the learning and teaching of linear algebra-a personal experience (Unpublished master’s thesis). Concordia University, Canada.
  • Harel, G. (1987). Variations in linear algebra content presentations. For the Learning of Mathematics, 7(3), 29-32.
  • Harel, G. (1989a). Learning and teaching linear algebra: Difficulties and an alternative approach to visualizing concepts and processes, Focus on Learning Problems in Mathematics 11, 139-148.
  • Harel, G. (1989b). Applying the principle of multiple embodiments in teaching linear algebra: Aspects of familiarity and mode of representation, School Science and Mathematics, 89, 49-57.
  • Harel, G. (2000). Principles of learning and teaching of linear algebra: Old and new observations. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 177-189). Dordrecht: Kluwer Academic Publishers.
  • Herrington, J. A., McKenney, S., Reeves, T. C. and Oliver, R. (2007). Design-based research and doctoral students: Guidelines for preparing a dissertation proposal. In C. Montgomerie & J. Seale (Eds.), Proceedings of EdMedia 2007: World Conference on Educational Multimedia, Hypermedia & Telecommunications (pp. 4089-4097). Chesapeake, VA: AACE.
  • Hillel, J. and Sierpinska, A. (1994). On one persistent mistake in linear algebra. The Proceedings PME 18, 2, 65-72.
  • Hillel, J. (2000). Modes of description and the problem of representation in linear algebra. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 191-207). Dordrecht: Kluwer Academic Publishers.
  • Hristovitch, S.P. (2001). Students’ conception of introductory linear algebra notions: The role of metaphors, analogies and symbolization (Unpublished doctoral dissertation). Purdie University, USA.
  • Klasa, J. (2009). A few pedagogical designs in linear algebra with Cabri and Maple. Linear Algebra and its Applications, 432, 2100–2111. Konyalıoğlu, A. C. (2003). Üniversite düzeyinde vektör uzayları ile ilgili kavramların anlaşılmasında görselleştirme yaklaşımının etkinliğinin incelenmesi (Doktora tezi). Atatürk Üniversitesi.
  • Kolman, B. and Hill, D.R. (2008). Elementary linear algebra and its applications (9th ed.). New Jersey: Pearson Prentice Hall.
  • Kuzu, A., Çankaya, S. ve Mısırlı, A. (2011). Tasarım tabanlı araştırma ve öğrenme ortamlarının tasarımı ve geliştirilmesinde kullanımı. Anadolu Journal of Educational Sciences International, 1(1), 19-35.
  • Medina, E. (2000). Student understanding of span, linear independence, and basis in an elementary algebra class (Unpublished doctoral dissertation). University of Northern Colorado, USA.
  • Nardi, E. (1997). The novice mathematician’s encounter with mathematical abstraction: A concept image of spanning sets in vectorial analysis. Educación Matemática, 91(1), 47-60.
  • Pecuch-Herrero, M. (2000). Strategies and computer projects for teaching linear algebra. International Journal of Mathematical Education in Science and Technology, 31, 181-186.
  • Reeves, T. C. (2000, April). Enhancing the worth of instructional technology research through "design experiments" and other development research strategies. Paper presented at the International Perspectives on Instructional Technology Research for the 21st Century, New Orleans, LA.
  • Robert, A. and Robinet, J. (1989). Quelques résultats sur l'apprentissage de l'algèbre linéaire en première année de DEUG, Cahier de Didactique des Mathématiques nº53, IREM de Paris VII.
  • Sierpinska, A. (2000). On some aspects of students’ thinking in linear algebra. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 209-246). Dordrecht: Kluwer Academic Publishers.
  • Soylu, Y. (2005). Lineer dönüşümler ve lineer dönüşümlerle ilgili kavramların öğretilmesinde geometri ile somutlaştırma yönteminin etkinliği (Doktora tezi). Atatürk Üniversitesi.
  • Stewart, S. (2008). Understanding linear algebra concepts through the embodied symbolic and formal worlds of mathematical thinking (Unpublished doctoral dissertation). Auckland University, New Zelland
  • Stewart, S. and Thomas, M. O. J. (2010). Student learning of basis, span and linear independence in linear algebra. International Journal of Mathematical Education in Science and Technology, 41(2), 173–188.
  • Wang, F. and Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research and Development, 53(4), 5-23.
  • Yıldırım, A. ve Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri (5. baskı). Ankara: Seçkin Yayıncılık.
  • Yildirim, A., & Simsek, H. (2011). Sosyal Bilimlerde Nitel Arastirma YOntemleri (8th ed.). Ankara: Seckin Yayinevi.
There are 34 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Gökay Açıkyıldız 0000-0002-0396-9269

Temel Kösa 0000-0002-4302-1018

Publication Date September 30, 2022
Submission Date July 15, 2021
Published in Issue Year 2022

Cite

APA Açıkyıldız, G., & Kösa, T. (2022). Vektör Uzaylarının Öğretimi İçin Tasarlanan Öğrenme Ortamına İlişkin Görüşlerin İncelenmesi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 22(3), 957-983. https://doi.org/10.17240/aibuefd.2022..-971969