Research Article
BibTex RIS Cite

Trends in Analytical Chemistry Education Research: A Biblometric Analysis

Year 2025, Volume: 25 Issue: 3, 1882 - 1904, 15.09.2025
https://doi.org/10.17240/aibuefd.2025..-1677603

Abstract

Analytical chemistry is a sub-branch of chemistry that focuses on the qualitative and quantitative analyses of chemical compositions of substances. Bibliometric analysis is an important tool to identify research gaps and research trends in a particular field. Although some bibliometric studies focusing on analytical chemistry research have been found in the current literature, no study focused on analytical chemistry education research has been found yet. Therefore, in this study, the current state of analytical chemistry education research was attempted to be revealed through a bibliometric analysis of relevant articles in the Web of Science (WoS) database between 2000 and 2024. The data collection process was conducted in accordance with the current PRISMA standards and a total of 742 articles were included in the scope of the research. The data were analyzed using Microsoft Excel, Harzing's Publish or Perish, VOSviewer, and Biblioshiny software. The results showed that the number of publications has increased significantly since 2010, with a peak of 81 articles in 2021 and 1,916 citations in 2023. The United States was the leading country with 1,061 publications, while the National University of Singapore ranked first among the institutions with 24 articles. The most productive journal was the Journal of Chemical Education, with 693 articles published. The article by Elgrishi et al. (2018) was the most influential article; Endler Marcel Borges was the most prolific author, and the keyword “analytical chemistry” was the most frequently used keyword. Overall, these results show that since the year 2010, there has been a growing interest in analytical chemistry education research.

References

  • Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
  • Arifiani, R., & Irwanto, I. (2024). Augmented reality integrated with mobile learning in chemistry education: A Bibliometric Analysis from 2012-2022. Journal of Educators Online, 21(2), n2.
  • Ayna, S., & Şen, Ş. (2024). Kimya eğitiminde sorgulamaya dayalı öğrenmenin bibliyometrik analizi. Milli Eğitim Dergisi, 53(243), 1357–1386. https://doi.org/10.37669/milliegitim.1242967
  • Barbosa, M. L. de O., & Galembeck, E. (2022). Mapping research on biochemistry education: A bibliometric analysis. Biochemistry and Molecular Biology Education, 50(2), 201–215. https://doi.org/10.1002/bmb.21607
  • Benhander, G. M. (2024). Mapping research landscape: Bibliometric analysis of microextraction techniques in drug analysis using scopus database. Analytical and Bioanalytical Chemistry Research, 11(2), 211–225. https://doi.org/10.22036/abcr.2024.429932.2013
  • Birkle, C., Pendlebury, D. A., Schnell, J., & Adams, J. (2020). Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 1(1), 363–376. https://doi.org/10.1162/qss_a_00018
  • Bota-Avram, C. (2023). Bibliometric analysis of sustainable business performance: Where are we going? A science map of the field. Economic Research-Ekonomska Istraživanja, 36(1), 2137–2176. https://doi.org/10.1080/1331677X.2022.2096094
  • Cardoso Rial, R. (2024). AI in analytical chemistry: Advancements, challenges, and future directions. Talanta, 274, 125949. https://doi.org/10.1016/j.talanta.2024.125949
  • Christian, G. D., Dasgupta, P. K., & Schug, K. A. (2013). Analytical chemistry (7th ed.). Wiley.
  • Destino, J. F., & Cunningham, K. (2020). At-home colorimetric and absorbance-based analyses: An opportunity for inquiry-based, laboratory-style learning. Journal of Chemical Education, 97(9), 2960–2966. https://doi.org/10.1021/acs.jchemed.0c00604
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2018). A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 95(2), 197–206. https://doi.org/10.1021/acs.jchemed.7b00361
  • Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338–342. https://doi.org/10.1096/fj.07-9492LSF
  • Filgueiras, M. F., de Jesus, P. C., & Borges, E. M. (2021). Quantification of nitrite in food and water samples using the griess assay and digital images acquired using a desktop scanner. Journal of Chemical Education, 98(10), 3303–3311. https://doi.org/10.1021/acs.jchemed.0c01392
  • Fung, F. M., Choo, W. Y., Ardisara, A., Zimmermann, C. D., Watts, S., Koscielniak, T., Blanc, E., Coumoul, X., &
  • Dumke, R. (2019). Applying a virtual reality platform in environmental chemistry education to conduct a field trip to an overseas site. Journal of Chemical Education, 96(2), 382–386. https://doi.org/10.1021/acs.jchemed.8b00728
  • Fung, F. M., & Watts, S. F. (2017). Bird’s-eye view of sampling sites: Using unmanned aerial vehicles to make chemistry fieldwork videos. Journal of Chemical Education, 94(10), 1557–1561. https://doi.org/10.1021/acs.jchemed.6b00985
  • Grinias, J. P. (2017). Making a game out of it: using web-based competitive quizzes for quantitative analysis content review. Journal of Chemical Education, 94(9), 1363–1366. https://doi.org/10.1021/acs.jchemed.7b00311
  • Grinias, J. P., & Smith, T. I. (2020). Preliminary evidence on the effect of an open-source textbook in second-year undergraduate analytical chemistry courses. Journal of Chemical Education, 97(8), 2347–2350. https://doi.org/10.1021/acs.jchemed.0c00293
  • Hanifa, W. S., Handayani, S., & Suyanta, S. (2024). Bibliometric analysis: Green chemistry trends and issues in chemistry education from 2019 to 2024. Jurnal Pendidikan Kimia, 16(2), 159–167. https://doi.org/10.24114/jpkim.v16i2.58875
  • Harris, D. C. (2015). Quantitative chemical analysis (9th ed.). W. H. Freeman.
  • Harzing, A. W. (2023). Using the Publish or Perish software: Crafting your career in academia. Tarma Software Research Limited.
  • Hassan, N. N., Talib, O., Shariman, T. P., Rahman, N. A., & Zamin, A. A. M. (2022). A bibliometric analysis on how organic chemistry education research has evolved collaboratively over time. Jurnal Pendidikan IPA Indonesia, 11(1), 73–90.
  • He, Y., Swenson, S., & Lents, N. (2012). Online video tutorials increase learning of difficult concepts in an undergraduate analytical chemistry course. Journal of Chemical Education, 89(9), 1128–1132. https://doi.org/10.1021/ed200685p
  • Hupp, A. M., Kovarik, M. L., & McCurry, D. A. (2024). Emerging areas in undergraduate analytical chemistry education: microfluidics, microcontrollers, and chemometrics. Annual Review of Analytical Chemistry, 17, 197–219. https://doi.org/10.1146/annurev-anchem-061622-041922
  • Irwanto, I., Afrizal, A., & Lukman, I. R. (2024). Research trends in chemistry education: A bibliometric review (1895–2022). AIP Conference Proceedings (Vol. 2982, No. 1). AIP Publishing. https://doi.org/10.1063/5.0182936
  • Kaushik, S., & Kumar, B. (Eds.). (2023). Analytical methods in chemical analysis: An introduction. De Gruyter.
  • Koçak, M., & Soylu, Y. (2023). Examining the general structure of learning environments designed in education: Bibliometric analysis between 1970 and 2022. Learning Environments Research, 26(3), 761–783. https://doi.org/10.1007/s10984-022-09452-8
  • Koh, S. B. K., & Fung, F. M. (2018). Applying a quiz-show style game to facilitate effective chemistry lexical communication. Journal of Chemical Education, 95(11), 1996–1999. https://doi.org/10.1021/acs.jchemed.7b00857
  • Kuntzleman, T. S., & Jacobson, E. C. (2016). Teaching Beer’s Law and absorption spectrophotometry with a smart phone: A substantially simplified protocol. Journal of Chemical Education, 93(7), 1249–1252. https://doi.org/10.1021/acs.jchemed.5b00844
  • Mao, S., Fu, L., Yin, C., Liu, X., & Karimi-Maleh, H. (2022). The role of electrochemical biosensors in SARS-CoV-2 detection: A bibliometrics-based analysis and review. RSC Advances, 12(35), 22592–22607. https://doi.org/10.1039/D2RA04162F
  • Martins, J., Gonçalves, R., & Branco, F. (2024). A bibliometric analysis and visualization of e-learning adoption using VOSviewer. Universal Access in the Information Society, 23(3), 1177–1191. https://doi.org/10.1007/s10209-022-00953-0
  • Masania, J., Grootveld, M., & Wilson, P. B. (2018). Teaching analytical chemistry to pharmacy students: A combined, iterative approach. Journal of Chemical Education, 95(1), 47–54. https://doi.org/10.1021/acs.jchemed.7b00495
  • Naese, J. A., McAteer, D., Hughes, K. D., Kelbon, C., Mugweru, A., & Grinias, J. P. (2019). Use of augmented reality in the instruction of analytical instrumentation design. Journal of Chemical Education, 96(3), 593–596. https://doi.org/10.1021/acs.jchemed.8b00794
  • Pabuçcu-Akış, A. (2025). Using innovative technology tools in organic chemistry education: Bibliometric analysis. Chemistry Teacher International, 7(1), 141-156. https://doi.org/10.1515/cti-2024-0055
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
  • Pedraja-Rejas, L., Garrido-Tamayo, M.-A., Ortega-Piwonka, I., Rodríguez-Ponce, E., & Laroze, D. (2024). Scientific production in Latin American physics: A bibliometric analysis. Scientometrics, 129(7), 4189–4230. https://doi.org/10.1007/s11192-024-05035-x Research and Innovation Rankings—Singapore 2024. (n.d.). Retrieved December 23, 2024, from https://www.scimagoir.com/rankings.php?country=SGP
  • Shao, J., Wang, C., Shen, Y., Shi, J., & Ding, D. (2022). Electrochemical sensors and biosensors for the analysis of tea components: A bibliometric review. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.818461
  • Shidiq, A. S., Permanasari, A., Hernani, & Hendayana, S. (2021). The use of simple spectrophotometer in STEM education: A bibliometric analysis. Moroccan Journal of Chemistry, 9(2), 290-300. https://doi.org/10.48317/IMIST.PRSM/morjchem-v9i2.27581
  • Sidou, L. F., & Borges, E. M. (2020). Teaching principal component analysis using a free and open-source software program and exercises applying PCA to real-world examples. Journal of Chemical Education, 97(6), 1666–1676. https://doi.org/10.1021/acs.jchemed.9b00924
  • Silva de Souza, R. Jr., & Borges, E. M. (2023). Teaching descriptive statistics and hypothesis tests measuring water density. Journal of Chemical Education, 100(11), 4438–4448. https://doi.org/10.1021/acs.jchemed.3c00402
  • Skoog, D., Holler, F., & Crouch, S. (2017). Principles of instrumental analysis (7th ed.). Cengage Learning.
  • Skoog, D., West, D., Holler, F., & Crouch, S. (2021). Fundamentals of analytical chemistry (10th ed.). Cengage Learning.
  • Soffiantini, V. A. (2021). Analytical chemistry: Principles and practice. De Gruyter. https://doi.org/10.1515/9783110721201
  • Tiwari, A. K., Singh, R., Patel, S. K., Kumar, S., Bhasin, N., Barla, A., & Singh, G. S. (2024). Emerging research trends in river health assessment: A bibliometric analysis. Anthropocene Science, 3(3–4), 157–178. https://doi.org/10.1007/s44177-024-00081-9
  • Tosun, C. (2024). Analysis of the last 40 years of science education research via bibliometric methods. Science & Education, 33(2), 451–480. https://doi.org/10.1007/s11191-022-00400-9
  • van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. Scopus. https://doi.org/10.1007/s11192-009-0146-3
  • van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks. In Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring scholarly impact: Methods and practice (pp. 285–320). Springer International Publishing. https://doi.org/10.1007/978-3-319-10377-8_13
  • Verma, K. K. (2017). Perspective: status and future of analytical chemistry in India. Analytical Chemistry, 89(3), 1392–1398. https://doi.org/10.1021/acs.analchem.6b04188
  • Wenclawiak, B. W., Koch, M., & Hadjicostas, E. (Eds.). (2010). Quality assurance in analytical chemistry: training and teaching (2nd ed.). Springer.
  • Wenzel, T. J., Forbes, P. B. C., Galarreta, B. C., Patel, B. A., Vogel, M., & Wong, D. K. Y. (2024). Incorporation of analytical chemistry in the undergraduate curriculum: Examples from different regions of the world. Analytical and Bioanalytical Chemistry, 416(18), 3997–4006. https://doi.org/10.1007/s00216-024-05360-3 World University Rankings. (2024, October 4). Times Higher Education (THE). https://www.timeshighereducation.com/world-university-rankings/latest/world-ranking
  • Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629

Analitik Kimya Eğitimi Araştırmalarındaki Eğilimler: Bibliyometrik Bir Analiz

Year 2025, Volume: 25 Issue: 3, 1882 - 1904, 15.09.2025
https://doi.org/10.17240/aibuefd.2025..-1677603

Abstract

Analitik kimya, maddelerin kimyasal bileşimlerinin nitel ve nicel analizlerine odaklanan, kimyanın bir alt dalıdır. Bibliyometrik analiz, belirli bir alandaki araştırma boşluklarını ve eğilimlerini belirlemek için önemli bir araçtır. Mevcut literatürde analitik kimya araştırmalarına odaklanan bazı bibliyometrik çalışmalar bulunmasına karşın, analitik kimya eğitimi araştırmaları üzerine odaklanan bir çalışmaya henüz rastlanmamıştır. Bu nedenle, bu çalışmada, 2000-2024 yılları arasında Web of Science (WoS) veri tabanındaki ilgili makalelerin bibliyometrik analizi yoluyla analitik kimya eğitimi araştırmalarının mevcut durumu ortaya konulmaya çalışılmıştır. Veri toplama süreci güncel PRISMA standartlarına uygun olarak yürütülmüş ve araştırma kapsamına toplam 742 makale dahil edilmiştir. Veriler Microsoft Excel, Harzing's Publish or Perish, VOSviewer ve Biblioshiny yazılımları kullanılarak analiz edilmiştir. Sonuçlar, yayın sayısının 2010 yılından bu yana önemli ölçüde arttığını, 2021 yılında 81 makale ve 2023 yılında 1.916 atıf ile zirveye ulaştığını göstermiştir. Amerika Birleşik Devletleri 1.061 yayınla lider ülke olurken, Singapur Ulusal Üniversitesi 24 makale ile kurumlar arasında ilk sırada yer almıştır. En üretken dergi, 693 makale yayılanan Journal of Chemical Education dergisi olmuştur. Elgrishi ve arkadaşlarının (2018) makalesi en etkili makale; Endler Marcel Borges en üretken yazar ve "analytical chemistry" kelimesi en sık kullanılan anahtar kelime olmuştur. Genel olarak, bu sonuçlar 2010 yılından bu yana analitik kimya eğitimi araştırmalarına olan ilginin giderek arttığını göstermektedir.

References

  • Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
  • Arifiani, R., & Irwanto, I. (2024). Augmented reality integrated with mobile learning in chemistry education: A Bibliometric Analysis from 2012-2022. Journal of Educators Online, 21(2), n2.
  • Ayna, S., & Şen, Ş. (2024). Kimya eğitiminde sorgulamaya dayalı öğrenmenin bibliyometrik analizi. Milli Eğitim Dergisi, 53(243), 1357–1386. https://doi.org/10.37669/milliegitim.1242967
  • Barbosa, M. L. de O., & Galembeck, E. (2022). Mapping research on biochemistry education: A bibliometric analysis. Biochemistry and Molecular Biology Education, 50(2), 201–215. https://doi.org/10.1002/bmb.21607
  • Benhander, G. M. (2024). Mapping research landscape: Bibliometric analysis of microextraction techniques in drug analysis using scopus database. Analytical and Bioanalytical Chemistry Research, 11(2), 211–225. https://doi.org/10.22036/abcr.2024.429932.2013
  • Birkle, C., Pendlebury, D. A., Schnell, J., & Adams, J. (2020). Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 1(1), 363–376. https://doi.org/10.1162/qss_a_00018
  • Bota-Avram, C. (2023). Bibliometric analysis of sustainable business performance: Where are we going? A science map of the field. Economic Research-Ekonomska Istraživanja, 36(1), 2137–2176. https://doi.org/10.1080/1331677X.2022.2096094
  • Cardoso Rial, R. (2024). AI in analytical chemistry: Advancements, challenges, and future directions. Talanta, 274, 125949. https://doi.org/10.1016/j.talanta.2024.125949
  • Christian, G. D., Dasgupta, P. K., & Schug, K. A. (2013). Analytical chemistry (7th ed.). Wiley.
  • Destino, J. F., & Cunningham, K. (2020). At-home colorimetric and absorbance-based analyses: An opportunity for inquiry-based, laboratory-style learning. Journal of Chemical Education, 97(9), 2960–2966. https://doi.org/10.1021/acs.jchemed.0c00604
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2018). A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 95(2), 197–206. https://doi.org/10.1021/acs.jchemed.7b00361
  • Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338–342. https://doi.org/10.1096/fj.07-9492LSF
  • Filgueiras, M. F., de Jesus, P. C., & Borges, E. M. (2021). Quantification of nitrite in food and water samples using the griess assay and digital images acquired using a desktop scanner. Journal of Chemical Education, 98(10), 3303–3311. https://doi.org/10.1021/acs.jchemed.0c01392
  • Fung, F. M., Choo, W. Y., Ardisara, A., Zimmermann, C. D., Watts, S., Koscielniak, T., Blanc, E., Coumoul, X., &
  • Dumke, R. (2019). Applying a virtual reality platform in environmental chemistry education to conduct a field trip to an overseas site. Journal of Chemical Education, 96(2), 382–386. https://doi.org/10.1021/acs.jchemed.8b00728
  • Fung, F. M., & Watts, S. F. (2017). Bird’s-eye view of sampling sites: Using unmanned aerial vehicles to make chemistry fieldwork videos. Journal of Chemical Education, 94(10), 1557–1561. https://doi.org/10.1021/acs.jchemed.6b00985
  • Grinias, J. P. (2017). Making a game out of it: using web-based competitive quizzes for quantitative analysis content review. Journal of Chemical Education, 94(9), 1363–1366. https://doi.org/10.1021/acs.jchemed.7b00311
  • Grinias, J. P., & Smith, T. I. (2020). Preliminary evidence on the effect of an open-source textbook in second-year undergraduate analytical chemistry courses. Journal of Chemical Education, 97(8), 2347–2350. https://doi.org/10.1021/acs.jchemed.0c00293
  • Hanifa, W. S., Handayani, S., & Suyanta, S. (2024). Bibliometric analysis: Green chemistry trends and issues in chemistry education from 2019 to 2024. Jurnal Pendidikan Kimia, 16(2), 159–167. https://doi.org/10.24114/jpkim.v16i2.58875
  • Harris, D. C. (2015). Quantitative chemical analysis (9th ed.). W. H. Freeman.
  • Harzing, A. W. (2023). Using the Publish or Perish software: Crafting your career in academia. Tarma Software Research Limited.
  • Hassan, N. N., Talib, O., Shariman, T. P., Rahman, N. A., & Zamin, A. A. M. (2022). A bibliometric analysis on how organic chemistry education research has evolved collaboratively over time. Jurnal Pendidikan IPA Indonesia, 11(1), 73–90.
  • He, Y., Swenson, S., & Lents, N. (2012). Online video tutorials increase learning of difficult concepts in an undergraduate analytical chemistry course. Journal of Chemical Education, 89(9), 1128–1132. https://doi.org/10.1021/ed200685p
  • Hupp, A. M., Kovarik, M. L., & McCurry, D. A. (2024). Emerging areas in undergraduate analytical chemistry education: microfluidics, microcontrollers, and chemometrics. Annual Review of Analytical Chemistry, 17, 197–219. https://doi.org/10.1146/annurev-anchem-061622-041922
  • Irwanto, I., Afrizal, A., & Lukman, I. R. (2024). Research trends in chemistry education: A bibliometric review (1895–2022). AIP Conference Proceedings (Vol. 2982, No. 1). AIP Publishing. https://doi.org/10.1063/5.0182936
  • Kaushik, S., & Kumar, B. (Eds.). (2023). Analytical methods in chemical analysis: An introduction. De Gruyter.
  • Koçak, M., & Soylu, Y. (2023). Examining the general structure of learning environments designed in education: Bibliometric analysis between 1970 and 2022. Learning Environments Research, 26(3), 761–783. https://doi.org/10.1007/s10984-022-09452-8
  • Koh, S. B. K., & Fung, F. M. (2018). Applying a quiz-show style game to facilitate effective chemistry lexical communication. Journal of Chemical Education, 95(11), 1996–1999. https://doi.org/10.1021/acs.jchemed.7b00857
  • Kuntzleman, T. S., & Jacobson, E. C. (2016). Teaching Beer’s Law and absorption spectrophotometry with a smart phone: A substantially simplified protocol. Journal of Chemical Education, 93(7), 1249–1252. https://doi.org/10.1021/acs.jchemed.5b00844
  • Mao, S., Fu, L., Yin, C., Liu, X., & Karimi-Maleh, H. (2022). The role of electrochemical biosensors in SARS-CoV-2 detection: A bibliometrics-based analysis and review. RSC Advances, 12(35), 22592–22607. https://doi.org/10.1039/D2RA04162F
  • Martins, J., Gonçalves, R., & Branco, F. (2024). A bibliometric analysis and visualization of e-learning adoption using VOSviewer. Universal Access in the Information Society, 23(3), 1177–1191. https://doi.org/10.1007/s10209-022-00953-0
  • Masania, J., Grootveld, M., & Wilson, P. B. (2018). Teaching analytical chemistry to pharmacy students: A combined, iterative approach. Journal of Chemical Education, 95(1), 47–54. https://doi.org/10.1021/acs.jchemed.7b00495
  • Naese, J. A., McAteer, D., Hughes, K. D., Kelbon, C., Mugweru, A., & Grinias, J. P. (2019). Use of augmented reality in the instruction of analytical instrumentation design. Journal of Chemical Education, 96(3), 593–596. https://doi.org/10.1021/acs.jchemed.8b00794
  • Pabuçcu-Akış, A. (2025). Using innovative technology tools in organic chemistry education: Bibliometric analysis. Chemistry Teacher International, 7(1), 141-156. https://doi.org/10.1515/cti-2024-0055
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
  • Pedraja-Rejas, L., Garrido-Tamayo, M.-A., Ortega-Piwonka, I., Rodríguez-Ponce, E., & Laroze, D. (2024). Scientific production in Latin American physics: A bibliometric analysis. Scientometrics, 129(7), 4189–4230. https://doi.org/10.1007/s11192-024-05035-x Research and Innovation Rankings—Singapore 2024. (n.d.). Retrieved December 23, 2024, from https://www.scimagoir.com/rankings.php?country=SGP
  • Shao, J., Wang, C., Shen, Y., Shi, J., & Ding, D. (2022). Electrochemical sensors and biosensors for the analysis of tea components: A bibliometric review. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.818461
  • Shidiq, A. S., Permanasari, A., Hernani, & Hendayana, S. (2021). The use of simple spectrophotometer in STEM education: A bibliometric analysis. Moroccan Journal of Chemistry, 9(2), 290-300. https://doi.org/10.48317/IMIST.PRSM/morjchem-v9i2.27581
  • Sidou, L. F., & Borges, E. M. (2020). Teaching principal component analysis using a free and open-source software program and exercises applying PCA to real-world examples. Journal of Chemical Education, 97(6), 1666–1676. https://doi.org/10.1021/acs.jchemed.9b00924
  • Silva de Souza, R. Jr., & Borges, E. M. (2023). Teaching descriptive statistics and hypothesis tests measuring water density. Journal of Chemical Education, 100(11), 4438–4448. https://doi.org/10.1021/acs.jchemed.3c00402
  • Skoog, D., Holler, F., & Crouch, S. (2017). Principles of instrumental analysis (7th ed.). Cengage Learning.
  • Skoog, D., West, D., Holler, F., & Crouch, S. (2021). Fundamentals of analytical chemistry (10th ed.). Cengage Learning.
  • Soffiantini, V. A. (2021). Analytical chemistry: Principles and practice. De Gruyter. https://doi.org/10.1515/9783110721201
  • Tiwari, A. K., Singh, R., Patel, S. K., Kumar, S., Bhasin, N., Barla, A., & Singh, G. S. (2024). Emerging research trends in river health assessment: A bibliometric analysis. Anthropocene Science, 3(3–4), 157–178. https://doi.org/10.1007/s44177-024-00081-9
  • Tosun, C. (2024). Analysis of the last 40 years of science education research via bibliometric methods. Science & Education, 33(2), 451–480. https://doi.org/10.1007/s11191-022-00400-9
  • van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. Scopus. https://doi.org/10.1007/s11192-009-0146-3
  • van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks. In Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring scholarly impact: Methods and practice (pp. 285–320). Springer International Publishing. https://doi.org/10.1007/978-3-319-10377-8_13
  • Verma, K. K. (2017). Perspective: status and future of analytical chemistry in India. Analytical Chemistry, 89(3), 1392–1398. https://doi.org/10.1021/acs.analchem.6b04188
  • Wenclawiak, B. W., Koch, M., & Hadjicostas, E. (Eds.). (2010). Quality assurance in analytical chemistry: training and teaching (2nd ed.). Springer.
  • Wenzel, T. J., Forbes, P. B. C., Galarreta, B. C., Patel, B. A., Vogel, M., & Wong, D. K. Y. (2024). Incorporation of analytical chemistry in the undergraduate curriculum: Examples from different regions of the world. Analytical and Bioanalytical Chemistry, 416(18), 3997–4006. https://doi.org/10.1007/s00216-024-05360-3 World University Rankings. (2024, October 4). Times Higher Education (THE). https://www.timeshighereducation.com/world-university-rankings/latest/world-ranking
  • Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629
There are 52 citations in total.

Details

Primary Language English
Subjects Chemistry Education
Journal Section Articles
Authors

Doğan Doğan 0000-0001-7889-329X

Early Pub Date September 3, 2025
Publication Date September 15, 2025
Submission Date April 16, 2025
Acceptance Date August 20, 2025
Published in Issue Year 2025 Volume: 25 Issue: 3

Cite

APA Doğan, D. (2025). Trends in Analytical Chemistry Education Research: A Biblometric Analysis. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 25(3), 1882-1904. https://doi.org/10.17240/aibuefd.2025..-1677603