Research Article
BibTex RIS Cite

Investigation of heavy metal accumulation and biomonitoring of Calepina irregularis species growing in Amasya (Turkey) province

Year 2019, Volume: 3 Issue: 2, 44 - 50, 01.11.2019
https://doi.org/10.30616/ajb.516101

Abstract

In
this study, heavy metal accumulation (Ni, Fe, Co, Mn) in Calepina irregularis (Asso) Thell. (Brassicaceae), growing
naturally in  Amasya province, and the
usability of it as abiomonitor was investigated.The amount of heavy metals in
the root, stem and leaves of plants which were collected from the city center,
near the highway, suburban and non-traffic (control) localities, were
determined by Inductively Coupled Plasma-Optical Emission Spectrometry
(ICP-OES) and the obtained data were evaluated.The Ni, Fe, Co and Mn values in
compete plants, growing in traffic areas, were found between the ranges
14.32-35.66 mgkg-1, 827.61- 2716.72 mgkg-1, 12.52-16.51
mgkg-1 and  175.93-826.75 mgkg-1
respectively. The amount of element accumulation in the plant was listed as
Fe>Mn>Ni>Co. Ni and Mn were found to be higher in plants growing near
the highway while Fe and Co were higher in plants collected from city centre.  Heavy metal accumulation was higher in leaves
and roots of the plants growing around the highways while it was higher in
stems of the plants growing in suburban areas.
According to the correlation with plant and soil samples
taken from the localities, the relationship between soil and plant, Fe and Mn
contents was found significant at P<0.01 level. This shows that the plant
receives Ni and Co elements due to air pollution, and that Fe and Mn are mostly
taken from the soil through its roots. According to the results of the study, C.irregularis can be used as a
biomonitor since it can monitor the short term changes in environmental
pollution in urban areas due to its wide distribution area and it has several
individuals in its habitat and its conformity with standard analysis methods.

References

  • Akgüç N, Özyiğit I, Yaşar U, Leblebici Z, Yarci C (2010). Use of Pyracantha coccinea Roem as a possible biomonitor for the selected heavy metals. International Journal of Environmental Science and Technology 7(3): 427-434.
  • Aksoy A, Öztürk MA (1997). Nerium oleander as a biomonitor of lead and other heavy metal pollution in Mediterranean Environments. Science of The Total Enviroment 205: 145-150.
  • Aksoy A, Öztürk MA (1996). Phoenix dactylifera L. as a biomonitor of heavy metal pollution in Turkey. Journal of Trace and Microprobe Techniques 14: 604-614.
  • Aksoy A, Hale WHG, Dixon JM (1999). Capsella bursa-pastoris (L.) Medic. as a biomonitor of heavy metals. Science Total of Environment 226: 177-86.
  • Alvarenga P, Palma P, Gonçalves AP, Fernandes RM, Cunha-Queda AC, Duarte E, Vallini G (2007). Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land. Environment International 33: 505-513.
  • Aricak B, Cetin M, Erdem R, Sevik H, Cometen H (2019). The change of some heavy metal concentrations in Scotch pine (Pinus sylvestris) depending on traffic density, organelle and washing. Applied Ecology and Environmental Research17(3): 6723-6734.
  • Balasooriya BLWK, Samson R, Mbikwa F, Boeckx P, Van Meirvenne M (2009). Biomonitoring of urban habitat quality by anatomical and chemical leaf characteristics. Environmental and Experimental Botany 65(2-3): 386-394.
  • Barcelos JPQ, Reis HPG, Godoy CV, Gratão PL, Furlani Junior E, Putt F, Reis AR (2018). Impact of foliar nickel application on urease activity, antioxidant metabolism and control of powdery mildew (Microsphaera diffusa) in soybean plants. Plant Pathology 67(7): 1502-1513.
  • Beckett KP, Freer-Smith PH, Taylor G (1998). Urban Woodlands: Their role in reducing the effects of particulate pollution. Environmental Pollution 99: 347-360.
  • Blaylock MJ, Huang JW (2000). Phytoextraction of metals. In: Raskin I, Ensley BD (eds.). Phytoremediation of toxic metals: using plants to clean-up the environment. New York, pp. 53-70.
  • Bolat İ, Kara Ö (2017). Bitki besin elementleri: Kaynakları, işlevleri, eksik ve fazlalıkları. Journal of Bartın Faculty of Forestry 191: 218-228.
  • Bondada BR, Tu S, Ma LQ (2004). Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L). Science Total of Environment 332:61–70.
  • Carrigan RA, Erwin TC (1951). Cobalt determination in soils by spectrographic analysis following chemical preconcentration. Soil Science Society of America Journal 15: 145-149.
  • Clemens S (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4): 475-486.
  • Conti ME, Cecchetti G (2001). Biological monitoring: lichens as bioindicators of air pollution assessment – a review. Environmental Pollution 114: 471-492.
  • Çubukçu A, Tüysüz N (2007). Trace element concentrations of soils, plants and waters caused by a copper smelting plant and other industries, Northeast Turkey. Environmental Geology 52: 93-108.
  • Çayır A, Coşkun M (2007). Determination of atmospheric heavy metal pollution in Çanakkale and Balıkesir Provinces using lichen (Cladonia rangiformis) as a bioindicator. Bulletin of Environmental Contamination and Toxicology 79: 367–370.
  • Das P, Samantaray S, Rout GR (1997). Studies on cadmium toxicity in plant. Environmental Pollution 98: 29-36.
  • Dimitrijević MD, Nujkić MM, Alagić SČ, Milić SM, Tošić SB (2016). Heavy metal contamination of topsoil and parts of peach-tree growing at different distances from a smelting complex. International Journal of Environmental Science and Technology 13(2):615–630.
  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal 1-18.
  • FAO/WHO (2003). Codex Alimentarius International Food Standards Codex Stan-179, .Codex Alimentariuscommission.
  • Fergusson J (1990). The heavy elements: Chemistry, environmental impact and health effects. New Zeland: Reader in Chemistry University of Canterbury Pergamon Press.
  • Galal TM, Shehata HS (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators 48: 244-251.
  • Gerendás J, Polacco JC, Freyermuth SK, Sattelmacher B (1999). Significance of nickel for plant growth and metabolism. Journal of Plant Nutrition and Soil Science 162(3): 241-256.
  • Hamutoğlu R, Dinçsoy AB, Cansaran-Duman D, Aras S (2012). Biyosorpsiyon, adsorpsiyon ve fitoremediasyon yöntemleri ve uygulamaları. Türk Hijyen Ve Deneysel Biyoloji Dergisi 69(4): 235-253.
  • Hüseyinova R, Kutbay HG, Bilgin A, Kilic D, Horuz A, Kirmanoğlu C (2009). Sulphur and some heavy metal contents in foliage of Corylus avellana and some roadside native plants in Ordu Province, Turkey. Ekoloji 18(70): 10-16.
  • Kabata-Pendias A (2000). Trace elements in soils and plants. New York: CRC press.
  • Kaçar B (1995). Bitki ve toprağın kimyasal analizleri. Ankara: Ankara Ünİversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı Yayınları.
  • Kahvecioğlu Ö, Kartal G, Güven A, Timur S (2003). Metallerin çevresel etkileri-I. Metalurji Dergisi 136: 47-53.
  • Laschober C, Limbeck A, Rendl J, Puxbaum H (2004). Particulate emissions from on-road vehicles in the Kaisermühlen-tunnel (Vienna, Austria). Atmospheric Environment 38(14): 2187-2195. Lopes RD, Pires M, Lima R, Periard F (2019). Monitoring air pollution with living organisms. Case study use of lichens as bioindicators in the Miguel Pereira City, Rio De Janeiro, Brazil. Chemical Engineering Transactions 74: 253-258.
  • Marinho CH, Giarratano E, Gil MN (2018). Metal biomonitoring in a Patagonian salt marsh. Environmental Monitoring and Assessment 190(10): 598.
  • Markert BA, Breure AM, Zechmeister HG (2003). Definitions, strategies and principles for bioindication/biomonitoring of the environment. In: Markert BA, Breure AM, Zechmeister HG (eds.). Bioindicators and biomonitors. Oxford: Elsevier, pp. 3-39.
  • Markert B (1993). Plants as biomonitors-indicators for heavy metals in the terrestrial environment. Weinheim: VHC, pp. 3-27.
  • Martley E, Gulson B, Pfeifer HR (2004). Metal concentrations in soils around the copper smelter and surrounding industrial complex of Port Kembla, NSW Australia. Science of The Total Environment 325:113–127.
  • Mertens J, Luyssaert S, Verheyen K (2005). Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environmental Pollution 138(1): 1-4.
  • Osma E, Serin M, Leblebici Z, Aksoy A (2012). Heavy metals accumulation in some vegetable sand soils in Istanbul. Ekoloji 21(82): 1-8.
  • Qing X, Yutong Z, Shenggao, L (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning Northeast China. Ecotoxicology and Environmental Safety 120:377-385.
  • Santos APM, Segura-Muñoz SI, Nadal M, Schuhmacher M, Domingo JL, Martinez CA (2015). Takayanagui AMM Traffic-related air pollution biomonitoring with Tradescantia pallida (Rose) Hunt. cv. purpurea Boom in Brazil. Environmental Monitoring and Assessment 187(2): 39.
  • Sevik H, Ozel HB, Cetin M, Özel HU, Erdem T (2019). Determination of changes in heavy metal accumulation depending on plant species, plant organism, and traffic density in some landscape plants. Air Quality, Atmosphere and Health 12(2): 189-195.
  • Shahid M, Dumat C, Khalida S, Schreck E, Xiong T, Nabeel NK (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. Journal of Hazardous Materials 325:36–58.
  • Tok HH (1997). Çevre Kirliliği. İstanbul: Anadolu Matbaacılık.
  • Tošić S, Alagić S, Dimitrijević M, Pavlović A, Nujkić M (2016). Plant parts of the apple tree (Malus spp) as possible indicators of heavy metal pollution. Ambio 45(4):501–512.
  • Uzu G, Sauvain JJ, Baeza-Squiban A, Riediker M, Sánchez Sandoval Hohl M, Val S, Dumat C (2011). In vitro assessment of the pulmonary toxicity and gastric availability of lead-rich particles from a lead recycling plant. Environmental Science and Technology 45(18): 7888-7895.
  • Vural H (1993). Ağır metal iyonlarının gıdalarda oluşturduğu kirlilikler. Çevre Dergisi 8: 3-8.
  • Wiseman CL, Zereini F, Püttmann W (2013). Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Science of the Total Environment 442: 86-95.
  • Yeşilyurt C, Akcan N (2001). Hava kalitesi izleme metodolojileri ve örneklem kriterleri. Ankara: TC Sağlık Bakanlığı Refik Saydam Hıfzıssıhha Merkezi Başkanlığı Çevre Sağlığı Araştırma Müdürlüğü Yayınları.
  • Yıldırım C, Karavin N, Cansaran A (2012). Amasya ili şehir merkezinde bulunan Elaeagnus angustifolia L ve Pinusbrutia Ten türlerinde bazı ağır metallerin içeriklerinin belirlenmesi. Biyoloji Bilimleri Araştırma Dergisi 5(2): 7-11.
  • Yücel E, Edtrnelioglau E, Soydam S, Celik S, Colak G (2010). Myriophyllum spicatum (Spiked water-milfoil) as a biomonitor of heavy metal pollution in Porsuk Stream/Turkey. Biological Diversity and Conservation 3(2): 133-144.

Amasya’da yetişen Calepina irregularis türünde ağır metal birikimi ve biyomonitör olarak kullanılabilirliğinin araştırılması

Year 2019, Volume: 3 Issue: 2, 44 - 50, 01.11.2019
https://doi.org/10.30616/ajb.516101

Abstract

Bu
çalışmada, Amasya ilinde doğal olarak yetişen Calepina irregularis (asso) thell. (Brassicaceae) türünde ağır
metal birikimi ( Ni, Fe, Co, Mn) ve biyomonitör olarak kullanılabilirliği
araştırılmıştır. Şehiriçi, otoyol kenarı, kenar semt ve trafiğin olmadığı
alanlardan toplanan bitki örneklerinin; kök, gövde ve yapraklarında ağır metal
miktarları İndüktif Eşleşmiş Plazma-Optik Emisyon Spektrometresi (ICP-OES)
ile  belirlenmiş ve elde edilen veriler
değerlendirilmiştir. Trafik bulunan alanlarda yetişen bitkilerin toplam
kütlesindeki Ni, Fe, Co ve Mn değerleri sırasıyla 14.32-35.66 mgkg-1,
827.61-2716.72 mgkg-1, 12.52-16.51 mgkg-1 and  175.93-826.75 mgkg-1 aralığında
bulunmuştur. Bitkide element biriktirme miktarı Fe>Mn>Ni>Co şeklinde
sıralanmıştır. Ni ve Mn elementi yol kenarında yetişen bireylerde, Fe ve Co ise
şehir içinde toplanan örneklerde yüksek değerde tespit edildi. Yol kenarında
yetişen bitki örneklerinde yaprak ve kökte ağır metal birikimi daha fazla
olurken, kenar semtte yetişen bitkilerde ise gövde de birikim daha fazla
bulunmuştur.
Lokalitelerden alınan bitki ve toprak örnekleri ile
yapılan korelasyona göre toprak ve bitki Fe ve Mn içerikleri arasında ki ilişki
P<0.01 düzeyinde anlamlı bulunmuştur. Buda bitkinin Ni ve Co elementlerini
hava kirliliği kaynaklı aldığını, Fe ve Mn’ yi daha çok kökleri yoluyla
topraktan aldığını ortaya koymaktadır. Çalışmanın sonuçlarına göre C.irregularis
türünün yayılış alanının geniş olması ve habitatında birey sayısı fazla olması,
standart analiz metotlarına uygun olması nedeni ile kentsel alanlarda çevresel
kirlilikteki kısa vadeli değişiklikleri izleyebildiği için biyomonitör olarak
kullanılabilir.

References

  • Akgüç N, Özyiğit I, Yaşar U, Leblebici Z, Yarci C (2010). Use of Pyracantha coccinea Roem as a possible biomonitor for the selected heavy metals. International Journal of Environmental Science and Technology 7(3): 427-434.
  • Aksoy A, Öztürk MA (1997). Nerium oleander as a biomonitor of lead and other heavy metal pollution in Mediterranean Environments. Science of The Total Enviroment 205: 145-150.
  • Aksoy A, Öztürk MA (1996). Phoenix dactylifera L. as a biomonitor of heavy metal pollution in Turkey. Journal of Trace and Microprobe Techniques 14: 604-614.
  • Aksoy A, Hale WHG, Dixon JM (1999). Capsella bursa-pastoris (L.) Medic. as a biomonitor of heavy metals. Science Total of Environment 226: 177-86.
  • Alvarenga P, Palma P, Gonçalves AP, Fernandes RM, Cunha-Queda AC, Duarte E, Vallini G (2007). Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land. Environment International 33: 505-513.
  • Aricak B, Cetin M, Erdem R, Sevik H, Cometen H (2019). The change of some heavy metal concentrations in Scotch pine (Pinus sylvestris) depending on traffic density, organelle and washing. Applied Ecology and Environmental Research17(3): 6723-6734.
  • Balasooriya BLWK, Samson R, Mbikwa F, Boeckx P, Van Meirvenne M (2009). Biomonitoring of urban habitat quality by anatomical and chemical leaf characteristics. Environmental and Experimental Botany 65(2-3): 386-394.
  • Barcelos JPQ, Reis HPG, Godoy CV, Gratão PL, Furlani Junior E, Putt F, Reis AR (2018). Impact of foliar nickel application on urease activity, antioxidant metabolism and control of powdery mildew (Microsphaera diffusa) in soybean plants. Plant Pathology 67(7): 1502-1513.
  • Beckett KP, Freer-Smith PH, Taylor G (1998). Urban Woodlands: Their role in reducing the effects of particulate pollution. Environmental Pollution 99: 347-360.
  • Blaylock MJ, Huang JW (2000). Phytoextraction of metals. In: Raskin I, Ensley BD (eds.). Phytoremediation of toxic metals: using plants to clean-up the environment. New York, pp. 53-70.
  • Bolat İ, Kara Ö (2017). Bitki besin elementleri: Kaynakları, işlevleri, eksik ve fazlalıkları. Journal of Bartın Faculty of Forestry 191: 218-228.
  • Bondada BR, Tu S, Ma LQ (2004). Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L). Science Total of Environment 332:61–70.
  • Carrigan RA, Erwin TC (1951). Cobalt determination in soils by spectrographic analysis following chemical preconcentration. Soil Science Society of America Journal 15: 145-149.
  • Clemens S (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4): 475-486.
  • Conti ME, Cecchetti G (2001). Biological monitoring: lichens as bioindicators of air pollution assessment – a review. Environmental Pollution 114: 471-492.
  • Çubukçu A, Tüysüz N (2007). Trace element concentrations of soils, plants and waters caused by a copper smelting plant and other industries, Northeast Turkey. Environmental Geology 52: 93-108.
  • Çayır A, Coşkun M (2007). Determination of atmospheric heavy metal pollution in Çanakkale and Balıkesir Provinces using lichen (Cladonia rangiformis) as a bioindicator. Bulletin of Environmental Contamination and Toxicology 79: 367–370.
  • Das P, Samantaray S, Rout GR (1997). Studies on cadmium toxicity in plant. Environmental Pollution 98: 29-36.
  • Dimitrijević MD, Nujkić MM, Alagić SČ, Milić SM, Tošić SB (2016). Heavy metal contamination of topsoil and parts of peach-tree growing at different distances from a smelting complex. International Journal of Environmental Science and Technology 13(2):615–630.
  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal 1-18.
  • FAO/WHO (2003). Codex Alimentarius International Food Standards Codex Stan-179, .Codex Alimentariuscommission.
  • Fergusson J (1990). The heavy elements: Chemistry, environmental impact and health effects. New Zeland: Reader in Chemistry University of Canterbury Pergamon Press.
  • Galal TM, Shehata HS (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators 48: 244-251.
  • Gerendás J, Polacco JC, Freyermuth SK, Sattelmacher B (1999). Significance of nickel for plant growth and metabolism. Journal of Plant Nutrition and Soil Science 162(3): 241-256.
  • Hamutoğlu R, Dinçsoy AB, Cansaran-Duman D, Aras S (2012). Biyosorpsiyon, adsorpsiyon ve fitoremediasyon yöntemleri ve uygulamaları. Türk Hijyen Ve Deneysel Biyoloji Dergisi 69(4): 235-253.
  • Hüseyinova R, Kutbay HG, Bilgin A, Kilic D, Horuz A, Kirmanoğlu C (2009). Sulphur and some heavy metal contents in foliage of Corylus avellana and some roadside native plants in Ordu Province, Turkey. Ekoloji 18(70): 10-16.
  • Kabata-Pendias A (2000). Trace elements in soils and plants. New York: CRC press.
  • Kaçar B (1995). Bitki ve toprağın kimyasal analizleri. Ankara: Ankara Ünİversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı Yayınları.
  • Kahvecioğlu Ö, Kartal G, Güven A, Timur S (2003). Metallerin çevresel etkileri-I. Metalurji Dergisi 136: 47-53.
  • Laschober C, Limbeck A, Rendl J, Puxbaum H (2004). Particulate emissions from on-road vehicles in the Kaisermühlen-tunnel (Vienna, Austria). Atmospheric Environment 38(14): 2187-2195. Lopes RD, Pires M, Lima R, Periard F (2019). Monitoring air pollution with living organisms. Case study use of lichens as bioindicators in the Miguel Pereira City, Rio De Janeiro, Brazil. Chemical Engineering Transactions 74: 253-258.
  • Marinho CH, Giarratano E, Gil MN (2018). Metal biomonitoring in a Patagonian salt marsh. Environmental Monitoring and Assessment 190(10): 598.
  • Markert BA, Breure AM, Zechmeister HG (2003). Definitions, strategies and principles for bioindication/biomonitoring of the environment. In: Markert BA, Breure AM, Zechmeister HG (eds.). Bioindicators and biomonitors. Oxford: Elsevier, pp. 3-39.
  • Markert B (1993). Plants as biomonitors-indicators for heavy metals in the terrestrial environment. Weinheim: VHC, pp. 3-27.
  • Martley E, Gulson B, Pfeifer HR (2004). Metal concentrations in soils around the copper smelter and surrounding industrial complex of Port Kembla, NSW Australia. Science of The Total Environment 325:113–127.
  • Mertens J, Luyssaert S, Verheyen K (2005). Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environmental Pollution 138(1): 1-4.
  • Osma E, Serin M, Leblebici Z, Aksoy A (2012). Heavy metals accumulation in some vegetable sand soils in Istanbul. Ekoloji 21(82): 1-8.
  • Qing X, Yutong Z, Shenggao, L (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning Northeast China. Ecotoxicology and Environmental Safety 120:377-385.
  • Santos APM, Segura-Muñoz SI, Nadal M, Schuhmacher M, Domingo JL, Martinez CA (2015). Takayanagui AMM Traffic-related air pollution biomonitoring with Tradescantia pallida (Rose) Hunt. cv. purpurea Boom in Brazil. Environmental Monitoring and Assessment 187(2): 39.
  • Sevik H, Ozel HB, Cetin M, Özel HU, Erdem T (2019). Determination of changes in heavy metal accumulation depending on plant species, plant organism, and traffic density in some landscape plants. Air Quality, Atmosphere and Health 12(2): 189-195.
  • Shahid M, Dumat C, Khalida S, Schreck E, Xiong T, Nabeel NK (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. Journal of Hazardous Materials 325:36–58.
  • Tok HH (1997). Çevre Kirliliği. İstanbul: Anadolu Matbaacılık.
  • Tošić S, Alagić S, Dimitrijević M, Pavlović A, Nujkić M (2016). Plant parts of the apple tree (Malus spp) as possible indicators of heavy metal pollution. Ambio 45(4):501–512.
  • Uzu G, Sauvain JJ, Baeza-Squiban A, Riediker M, Sánchez Sandoval Hohl M, Val S, Dumat C (2011). In vitro assessment of the pulmonary toxicity and gastric availability of lead-rich particles from a lead recycling plant. Environmental Science and Technology 45(18): 7888-7895.
  • Vural H (1993). Ağır metal iyonlarının gıdalarda oluşturduğu kirlilikler. Çevre Dergisi 8: 3-8.
  • Wiseman CL, Zereini F, Püttmann W (2013). Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Science of the Total Environment 442: 86-95.
  • Yeşilyurt C, Akcan N (2001). Hava kalitesi izleme metodolojileri ve örneklem kriterleri. Ankara: TC Sağlık Bakanlığı Refik Saydam Hıfzıssıhha Merkezi Başkanlığı Çevre Sağlığı Araştırma Müdürlüğü Yayınları.
  • Yıldırım C, Karavin N, Cansaran A (2012). Amasya ili şehir merkezinde bulunan Elaeagnus angustifolia L ve Pinusbrutia Ten türlerinde bazı ağır metallerin içeriklerinin belirlenmesi. Biyoloji Bilimleri Araştırma Dergisi 5(2): 7-11.
  • Yücel E, Edtrnelioglau E, Soydam S, Celik S, Colak G (2010). Myriophyllum spicatum (Spiked water-milfoil) as a biomonitor of heavy metal pollution in Porsuk Stream/Turkey. Biological Diversity and Conservation 3(2): 133-144.
There are 48 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Dudu Duygu Kılıç 0000-0001-6425-6062

Publication Date November 1, 2019
Acceptance Date July 28, 2019
Published in Issue Year 2019 Volume: 3 Issue: 2

Cite

APA Kılıç, D. D. (2019). Investigation of heavy metal accumulation and biomonitoring of Calepina irregularis species growing in Amasya (Turkey) province. Anatolian Journal of Botany, 3(2), 44-50. https://doi.org/10.30616/ajb.516101
AMA Kılıç DD. Investigation of heavy metal accumulation and biomonitoring of Calepina irregularis species growing in Amasya (Turkey) province. Ant J Bot. November 2019;3(2):44-50. doi:10.30616/ajb.516101
Chicago Kılıç, Dudu Duygu. “Investigation of Heavy Metal Accumulation and Biomonitoring of Calepina Irregularis Species Growing in Amasya (Turkey) Province”. Anatolian Journal of Botany 3, no. 2 (November 2019): 44-50. https://doi.org/10.30616/ajb.516101.
EndNote Kılıç DD (November 1, 2019) Investigation of heavy metal accumulation and biomonitoring of Calepina irregularis species growing in Amasya (Turkey) province. Anatolian Journal of Botany 3 2 44–50.
IEEE D. D. Kılıç, “Investigation of heavy metal accumulation and biomonitoring of Calepina irregularis species growing in Amasya (Turkey) province”, Ant J Bot, vol. 3, no. 2, pp. 44–50, 2019, doi: 10.30616/ajb.516101.
ISNAD Kılıç, Dudu Duygu. “Investigation of Heavy Metal Accumulation and Biomonitoring of Calepina Irregularis Species Growing in Amasya (Turkey) Province”. Anatolian Journal of Botany 3/2 (November 2019), 44-50. https://doi.org/10.30616/ajb.516101.
JAMA Kılıç DD. Investigation of heavy metal accumulation and biomonitoring of Calepina irregularis species growing in Amasya (Turkey) province. Ant J Bot. 2019;3:44–50.
MLA Kılıç, Dudu Duygu. “Investigation of Heavy Metal Accumulation and Biomonitoring of Calepina Irregularis Species Growing in Amasya (Turkey) Province”. Anatolian Journal of Botany, vol. 3, no. 2, 2019, pp. 44-50, doi:10.30616/ajb.516101.
Vancouver Kılıç DD. Investigation of heavy metal accumulation and biomonitoring of Calepina irregularis species growing in Amasya (Turkey) province. Ant J Bot. 2019;3(2):44-50.

Anatolian Journal of Botany is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1.