Research Article
BibTex RIS Cite

Stratejik Hammaddeler İçin Subjektif ve Objektif Ağırlıklandırma Kullanarak Karar Alma

Year 2025, Volume: 3 Issue: 3, 117 - 135

Abstract

Teknolojik gelişmeler, küresel kentleşme ve dinamik sosyo-ekonomik ilerlemeler ile birlikte stratejik hammaddelere (SRM) olan talebin önümüzdeki yıllarda artması beklenmekte olup, hammadde değerlendirmesini hem kaçınılmaz hem de vazgeçilmez hale getirmektedir. Bu malzemelerin kapsamlı kritikliği değerlendirmesi doğası gereği çok sayıda parametreyi, farklı hammaddeleri ve sürekli değişen değişkenleri içermektedir. Avrupa Birliği (AB), 2011 yılından itibaren kritik hammaddeler (CRM) konusunda üç yılda bir sistematik değerlendirmeler gerçekleştirmiştir. Bu çalışma, AB için hazırlanan CRM nihai raporuna odaklanmakta olup, Bizmut, Bor, Kobalt, Galyum, Germanyum, Lityum, Magnezyum, Manganez, Doğal Grafit, Bakır, Silikon, Titanyum, Tungsten ve Nikel gibi SRM’lerin ilk kez listeye dahil edildiği değerlendirmeyi incelemektedir. Bu kapsamda, gerçek veriler kullanılarak nesnel ağırlıklandırma için Entropi ve CRITIC (Kriterler Arası Korelasyon Yoluyla Kriter Önem Derecesi) yöntemleri uygulanmış, katılımcı uzmanların değerlendirmelerini sürece dâhil etmek amacıyla ise SWARA (Adım Adım Ağırlık Oranı Analizi) ve AHP (Analitik Hiyerarşi Süreci) yöntemlerinden yararlanılmıştır. Bu yöntemler, kritik matris içerisinde tedarik riski (SR), ekonomik önem (EI), ana tedarikçi payı, sektör payı ve katma değer ile ilişkili malzemelerin değerlendirilmesi, ikame (EI ve SR) ve ithalat bağımlılığı gibi ana kriterlerin ağırlıklarını belirlemek için kullanılmıştır. Uygulanan tüm yöntemler boyunca hesaplama sonuçları tutarlı bir biçimde tedarik riskinin, katma değerin ve ithalat bağımlılığının SRM’lerin kapsamlı değerlendirmesi ile en güçlü şekilde ilişkili olduğunu göstermektedir. Bulgular, gelişmekte olan ülkelerde politika yapıcıların en temel kriterlere dayalı kendi kritik değerlendirmelerini uyarlamalarına rehberlik etmektedir.

Ethical Statement

Yazar(lar), bu makalenin araştırılması, yazarlığı ve/veya yayımlanmasıyla ilgili herhangi bir çıkar çatışmasının bulunmadığını beyan etmektedir.

Supporting Institution

Bu araştırma herhangi bir dış finansman almamıştır.

References

  • [1] P. Ferro, F. Bonollo, “Design for recycling in a critical raw materials perspective”, Recycling, 4:4 (2019) 44.
  • [2] M. Grohol, C. Veeh, “Study on the Critical Raw Materials for the EU 2023 Final Report”, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, (2023).
  • [3] E. G. Polat, M. Yücesan, M. Gül, “A comparative framework for criticality assessment of strategic raw materials in Turkey”, Resources Policy, 82 (2023) 103511.
  • [4] T. E. Graedel, B. K. Reck, “Six years of criticality assessments: what have we learned so far?”, Journal of Industrial Ecology, 20:4 (2016) 692–699.
  • [5] M. Wentker, M. Greenwood, M. C. Asaba, J. Leker, “A raw material criticality and environmental impact assessment of state-of-the-art and post-lithium-ion cathode technologies”, Journal of Energy Storage, 26 (2019) 101022.
  • [6] G. A. Blengini, P. Nuss, J. Dewulf, V. Nita, L. T. Peirò, B. Vidal-Legaz, C. Latunussa, L. Mancini, D. Blagoeva, D. Pennington, “EU methodology for critical raw materials assessment: Policy needs and proposed solutions for incremental improvements”, Resources Policy, 53 (2017) 12–19.
  • [7] S. M. Hayes, E. A. McCullough, “Critical minerals: A review of elemental trends in comprehensive criticality studies”, Resources Policy, 59 (2018) 192–199.
  • [8] J. Kim, J. Lee, B. Kim, J. Kim, “Raw material criticality assessment with weighted indicators: An application of fuzzy analytic hierarchy process”, Resources Policy, 60 (2019) 225–233.
  • [9] D. Schrijvers, A. Hool, G. A. Blengini, W.-Q. Chen, J. Dewulf, R. Eggert, L. van Ellen, R. Gauss, J. Goddin, K. Habib, “A review of methods and data to determine raw material criticality”, Resources, Conservation and Recycling, 155 (2020) 104617.
  • [10] M. Hofmann, H. Hofmann, C. Hagelüken, A. Hool, “Critical raw materials: A perspective from the materials science community”, Sustainable Materials and Technologies, 17 (2018) e00074.
  • [11] L. Mancini, L. Benini, S. Sala, “Characterization of raw materials based on supply risk indicators for Europe”, The International Journal of Life Cycle Assessment, 23:3 (2018) 726–738.
  • [12] S. Glöser, L. T. Espinoza, C. Gandenberger, M. Faulstich, “Raw material criticality in the context of classical risk assessment”, Resources Policy, 44 (2015) 35–46.
  • [13] H. Hatayama, K. Tahara, “Criticality assessment of metals for Japan’s resource strategy”, Materials Transactions, 56:2 (2015) 229–235.
  • [14] L. Bongartz, S. Shammugam, E. Gervais, T. Schlegl, “Multidimensional criticality assessment of metal requirements for lithium-ion batteries in electric vehicles and stationary storage applications in Germany by 2050”, Journal of Cleaner Production, 292 (2021) 126056.
  • [15] C. Helbig, M. Bruckler, A. Thorenz, A. Tuma, “An overview of indicator choice and normalization in raw material supply risk assessments”, Resources, 10:8 (2021) 79.
  • [16] Y. Xiaofei, “Research on the action mechanism of circular economy development and green finance based on entropy method and big data”, Journal of Enterprise Information Management, 35:4/5 (2022) 988–1010.
  • [17] L. Erdmann, T. E. Graedel, “Criticality of non-fuel minerals: a review of major approaches and analyses”, Environmental Science & Technology, 45:18 (2011) 7620–7630.
  • [18] W. L. Filho, R. Kotter, P. G. Özuyar, I. R. Abubakar, J. H. P. P. Eustachio, N. R. Matandirotya, “Understanding rare earth elements as critical raw materials”, Sustainability, 15:3 (2023) 1919.
  • [19] C. Knoeri, P. A. Wäger, A. Stamp, H.-J. Althaus, M. Weil, “Towards a dynamic assessment of raw materials criticality: Linking agent-based demand with material flow supply modelling approaches”, Science of the Total Environment, 461 (2013) 808–812.
  • [20] P. Ferro, F. Bonollo, “Materials selection in a critical raw materials perspective”, Materials & Design, 177 (2019) 107848.
  • [21] C. E. Shannon, “A mathematical theory of communication”, The Bell System Technical Journal, 27:3 (1948) 379–423.
  • [22] D. Diakoulaki, G. Mavrotas, L. Papayannakis, “Determining objective weights in multiple criteria problems: The critic method”, Computers & Operations Research, 22:7 (1995) 763–770.
  • [23] Y. Shao, Z. Luo, H. Wu, X. Han, B. Pan, S. Liu, C. G. Claudel, “Evaluation of two improved schemes at non-aligned intersections affected by a work zone with an entropy method”, Sustainability, 12:14 (2020) 5494.
  • [24] J. He, Z. Huang, A. R. Mishra, M. Alrasheedi, “Developing a new framework for conceptualizing the emerging sustainable community-based tourism using an extended interval-valued Pythagorean fuzzy SWARA-MULTIMOORA”, Technological Forecasting and Social Change, 171 (2021) 120955.
  • [25] E. K. Zavadskas, Ž. Stević, I. Tanackov, O. Prentkovskis, “A novel multicriteria approach – rough step-wise weight assessment ratio analysis method (R-SWARA) and its application in logistics”, Studies in Informatics and Control, 27:1 (2018) 97–106.
  • [26] E. Göçmen, “Smart airport: Evaluation of performance standards and technologies for a smart logistics zone”, Transportation Research Record, 2675:7 (2021) 480–490.
  • [27] T. L. Saaty, “Axiomatic foundation of the analytic hierarchy process”, Management Science, 32:7 (1986) 841–855.
  • [28] J. Xie, Z. Xia, X. Tian, Y. Liu, “Nexus and synergy between the low-carbon economy and circular economy: A systematic and critical review”, Environmental Impact Assessment Review, 100 (2023) 107077.
  • [29] E. G. Polat, “Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects”, International Scientific and Vocational Studies Journal, 7:2 (2023) 176–186.
  • [30] A. Salvi, V. Arosio, L. M. Compagnoni, I. Cubiña, G. Scaccabarozzi, G. Dotelli, “Considering the environmental impact of circular strategies: A dynamic combination of material efficiency and LCA”, Journal of Cleaner Production, 387 (2023) 135850.
  • [31] E. Göçmen-Polat, “Assessment of Critical Raw Materials by Addressing Sustainable Development Goals Using Fuzzy MCDM Approach”, Proc., Harmonizing Global Efforts in Meeting Sustainable Development Goals, IGI Global (2023) 164–181.
  • [32] J. Torrubia, A. Valero, A. Valero, A. Lejuez, “Challenges and Opportunities for the Recovery of Critical Raw Materials from Electronic Waste: The Spanish Perspective”, Sustainability, 15:2 (2023) 1393.
  • [33] A. Ortego, G. Calvo, A. Valero, M. Iglesias-Embil, A. Valero, M. Villacampa, “Assessment of strategic raw materials in the automobile sector”, Resources, Conservation and Recycling, 161 (2020) 104968.

Decision-Making for Strategic Raw Materials Using Subjective and Objective Weighting

Year 2025, Volume: 3 Issue: 3, 117 - 135

Abstract

With the technological advancements, global urbanization, and dynamic socio-economic progress, the demand for strategic raw materials (SRMs) is expected to increase in the coming years, making raw material assessment both inevitable and indispensable. The comprehensive criticality assessment of these materials inherently involves a multitude of parameters, raw materials, and constantly changing variables. European Union (EU) has systematically conducted assessments of critical raw materials (CRMs) on a triennial basis since 2011. This paper focuses on the final report on CRMs for the EU, where SRMs including Bismuth, Boron, Cobalt, Gallium, Germanium, Lithium, Magnesium, Manganese, Natural Graphite, Copper, Silicon, Titanium, Tungsten, and Nickel were first added to the list. In this context, the Entropy and CRITIC (Criteria Importance Through Inter-criteria Correlation) methods were applied for subjective weighting using real data, while SWARA (Stepwise Weight Assessment Ratio Analysis) and AHP (Analytical Hierarchy Process) were used to incorporate the assessments of participating experts. These methods were employed to determine the weights of the main criteria, including supply risk (SR), economic importance (EI), main supplier share, evaluation of materials linked with sector share and value-added, substitution (EI and SR), and import reliance in the criticality matrix. Across all applied methodologies, the computational results consistently converge to demonstrate that supply risk, value-added, and import reliance are most profoundly associated with the comprehensive assessment of SRMs. The findings guide policymakers in developing countries in tailoring their own criticality assessments based on the most essential criteria.

Ethical Statement

The author(s) declare that they have no potential conflict of interest regarding the research, authorship, and/or publication of this article.

Supporting Institution

This research received no external funding.

References

  • [1] P. Ferro, F. Bonollo, “Design for recycling in a critical raw materials perspective”, Recycling, 4:4 (2019) 44.
  • [2] M. Grohol, C. Veeh, “Study on the Critical Raw Materials for the EU 2023 Final Report”, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, (2023).
  • [3] E. G. Polat, M. Yücesan, M. Gül, “A comparative framework for criticality assessment of strategic raw materials in Turkey”, Resources Policy, 82 (2023) 103511.
  • [4] T. E. Graedel, B. K. Reck, “Six years of criticality assessments: what have we learned so far?”, Journal of Industrial Ecology, 20:4 (2016) 692–699.
  • [5] M. Wentker, M. Greenwood, M. C. Asaba, J. Leker, “A raw material criticality and environmental impact assessment of state-of-the-art and post-lithium-ion cathode technologies”, Journal of Energy Storage, 26 (2019) 101022.
  • [6] G. A. Blengini, P. Nuss, J. Dewulf, V. Nita, L. T. Peirò, B. Vidal-Legaz, C. Latunussa, L. Mancini, D. Blagoeva, D. Pennington, “EU methodology for critical raw materials assessment: Policy needs and proposed solutions for incremental improvements”, Resources Policy, 53 (2017) 12–19.
  • [7] S. M. Hayes, E. A. McCullough, “Critical minerals: A review of elemental trends in comprehensive criticality studies”, Resources Policy, 59 (2018) 192–199.
  • [8] J. Kim, J. Lee, B. Kim, J. Kim, “Raw material criticality assessment with weighted indicators: An application of fuzzy analytic hierarchy process”, Resources Policy, 60 (2019) 225–233.
  • [9] D. Schrijvers, A. Hool, G. A. Blengini, W.-Q. Chen, J. Dewulf, R. Eggert, L. van Ellen, R. Gauss, J. Goddin, K. Habib, “A review of methods and data to determine raw material criticality”, Resources, Conservation and Recycling, 155 (2020) 104617.
  • [10] M. Hofmann, H. Hofmann, C. Hagelüken, A. Hool, “Critical raw materials: A perspective from the materials science community”, Sustainable Materials and Technologies, 17 (2018) e00074.
  • [11] L. Mancini, L. Benini, S. Sala, “Characterization of raw materials based on supply risk indicators for Europe”, The International Journal of Life Cycle Assessment, 23:3 (2018) 726–738.
  • [12] S. Glöser, L. T. Espinoza, C. Gandenberger, M. Faulstich, “Raw material criticality in the context of classical risk assessment”, Resources Policy, 44 (2015) 35–46.
  • [13] H. Hatayama, K. Tahara, “Criticality assessment of metals for Japan’s resource strategy”, Materials Transactions, 56:2 (2015) 229–235.
  • [14] L. Bongartz, S. Shammugam, E. Gervais, T. Schlegl, “Multidimensional criticality assessment of metal requirements for lithium-ion batteries in electric vehicles and stationary storage applications in Germany by 2050”, Journal of Cleaner Production, 292 (2021) 126056.
  • [15] C. Helbig, M. Bruckler, A. Thorenz, A. Tuma, “An overview of indicator choice and normalization in raw material supply risk assessments”, Resources, 10:8 (2021) 79.
  • [16] Y. Xiaofei, “Research on the action mechanism of circular economy development and green finance based on entropy method and big data”, Journal of Enterprise Information Management, 35:4/5 (2022) 988–1010.
  • [17] L. Erdmann, T. E. Graedel, “Criticality of non-fuel minerals: a review of major approaches and analyses”, Environmental Science & Technology, 45:18 (2011) 7620–7630.
  • [18] W. L. Filho, R. Kotter, P. G. Özuyar, I. R. Abubakar, J. H. P. P. Eustachio, N. R. Matandirotya, “Understanding rare earth elements as critical raw materials”, Sustainability, 15:3 (2023) 1919.
  • [19] C. Knoeri, P. A. Wäger, A. Stamp, H.-J. Althaus, M. Weil, “Towards a dynamic assessment of raw materials criticality: Linking agent-based demand with material flow supply modelling approaches”, Science of the Total Environment, 461 (2013) 808–812.
  • [20] P. Ferro, F. Bonollo, “Materials selection in a critical raw materials perspective”, Materials & Design, 177 (2019) 107848.
  • [21] C. E. Shannon, “A mathematical theory of communication”, The Bell System Technical Journal, 27:3 (1948) 379–423.
  • [22] D. Diakoulaki, G. Mavrotas, L. Papayannakis, “Determining objective weights in multiple criteria problems: The critic method”, Computers & Operations Research, 22:7 (1995) 763–770.
  • [23] Y. Shao, Z. Luo, H. Wu, X. Han, B. Pan, S. Liu, C. G. Claudel, “Evaluation of two improved schemes at non-aligned intersections affected by a work zone with an entropy method”, Sustainability, 12:14 (2020) 5494.
  • [24] J. He, Z. Huang, A. R. Mishra, M. Alrasheedi, “Developing a new framework for conceptualizing the emerging sustainable community-based tourism using an extended interval-valued Pythagorean fuzzy SWARA-MULTIMOORA”, Technological Forecasting and Social Change, 171 (2021) 120955.
  • [25] E. K. Zavadskas, Ž. Stević, I. Tanackov, O. Prentkovskis, “A novel multicriteria approach – rough step-wise weight assessment ratio analysis method (R-SWARA) and its application in logistics”, Studies in Informatics and Control, 27:1 (2018) 97–106.
  • [26] E. Göçmen, “Smart airport: Evaluation of performance standards and technologies for a smart logistics zone”, Transportation Research Record, 2675:7 (2021) 480–490.
  • [27] T. L. Saaty, “Axiomatic foundation of the analytic hierarchy process”, Management Science, 32:7 (1986) 841–855.
  • [28] J. Xie, Z. Xia, X. Tian, Y. Liu, “Nexus and synergy between the low-carbon economy and circular economy: A systematic and critical review”, Environmental Impact Assessment Review, 100 (2023) 107077.
  • [29] E. G. Polat, “Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects”, International Scientific and Vocational Studies Journal, 7:2 (2023) 176–186.
  • [30] A. Salvi, V. Arosio, L. M. Compagnoni, I. Cubiña, G. Scaccabarozzi, G. Dotelli, “Considering the environmental impact of circular strategies: A dynamic combination of material efficiency and LCA”, Journal of Cleaner Production, 387 (2023) 135850.
  • [31] E. Göçmen-Polat, “Assessment of Critical Raw Materials by Addressing Sustainable Development Goals Using Fuzzy MCDM Approach”, Proc., Harmonizing Global Efforts in Meeting Sustainable Development Goals, IGI Global (2023) 164–181.
  • [32] J. Torrubia, A. Valero, A. Valero, A. Lejuez, “Challenges and Opportunities for the Recovery of Critical Raw Materials from Electronic Waste: The Spanish Perspective”, Sustainability, 15:2 (2023) 1393.
  • [33] A. Ortego, G. Calvo, A. Valero, M. Iglesias-Embil, A. Valero, M. Villacampa, “Assessment of strategic raw materials in the automobile sector”, Resources, Conservation and Recycling, 161 (2020) 104968.
There are 33 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Research Article
Authors

Elifcan Göçmen Polat 0000-0002-0316-281X

Erkan Polat 0000-0002-2326-7387

Publication Date November 28, 2025
Submission Date March 11, 2025
Acceptance Date October 25, 2025
Published in Issue Year 2025 Volume: 3 Issue: 3

Cite

IEEE E. Göçmen Polat and E. Polat, “Decision-Making for Strategic Raw Materials Using Subjective and Objective Weighting”, AJEAS, vol. 3, no. 3, pp. 117–135, doi: 10.70988/ajeas.1655431.

Alpha Journal of Engineering and Applied Sciences © 2023 is licensed under the Creative Commons Attribution 4.0 International License (CC BY)