Research Article
BibTex RIS Cite

Pattern Recognition Using Neural Networks

Year 2019, Volume: 3 Issue: 2, 183 - 189, 11.02.2020

Abstract

Due to its various applications, such as security systems, medical systems, entertainment, etc., face
recognition has also been identified as one of the main research topics. The preferred method of human
identification is face recognition: natural, robust and non-intrusive. A wide range of systems require reliable
personal identification schemes to either confirm or determine the identity of a requester. The purpose of
these schemes is to ensure that only a legitimate user and no one else accesses the rendered services. For
example, secure access to buildings, computer systems, laptops, mobile phone and ATMs is included. These
systems are vulnerable to an impostor’s will in the absence of robust personal recognition systems. This article has
developed and shown the human face identification system using artificial neural networks, which reflects that
the face recognition rate for 40 individuals shows results for 400 frames in the AT&T database at 85.5 percent

References

  • Kohonen, T., 1990. Self-Organizing Map. Proceedings of the IEEE, 78(9), 1464-1480
  • Germano, T., 1999. Self-Organizing Maps. Available in http://davis.wpi.edu/~matt/courses/soms/.
  • Kohonen,T., 1982. Self-Organizing formation of topologically correct feature maps. Biological Cybernetics, 43, 59-69.
  • Kumar, D., C.S. Rai and S. Kumar, 2008. Dimensionality Reduction using SOM based on Technique for Face Recognition. Journal of Multimedia, 3(1).
  • Zurada, J.M. 1992. Introduction to Artificial Neural Systems. Jaico Books, Mumbai.
  • Jamil, N., S. Lqbal and N. Iqbal, 2001. Face Recognition using Neural Networks. Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century, Lahore.
  • AT&T Laboratories Cambridge, The database of faces, Available in http://www.cl.cam.ac.uk/research/ dtg/attarchive/facesataglance.html.
  • Kumar, D., C.S. Rai and S. Kumar, 2005. Face Recognition using Self-Organizing Map and Principal Component Analysis, 2005 International Conference on Neural Networks and Brain, Beijing.
  • Lawrence, S., C.L.Giles,A.C.Tsoi andA.D. Back, 1997. Face Recognition: Convolutional Neural Network Approach. IEEE Transactions on Neural Networks, 8(1), 98-113.
  • Albawi, S., O. Bayat, S. Al-Azawi and O.N. Ucan, 2018. Social Touch Gesture Recognition Using Convolutional Neural Network. Computational Intelligence and Neuroscience, 2018, 6973103.
  • Mohammed,T.A.,A.Alazzawi, O.N.Uçan and O. Bayat, 2018. Neural Network Behavior Analysis Based on Transfer Functions MLP & RB in Face Recognition. Proceedings of the First International Conference on Data Science, E-learning and Information Systems, New York, 2018, 15:1–15:6.

Sinir Ağları ile Desen Tanıma

Year 2019, Volume: 3 Issue: 2, 183 - 189, 11.02.2020

Abstract

Güvenlik sistemleri, tıbbi sistemler, eğlence vb. Çeşitli uygulamaları nedeniyle yüz tanıma da ana araştırma
konularından biri olarak tanımlanmıştır. Tercih edilen insan tanımlama yöntemi yüz tanıma yöntemidir: doğal,
sağlam ve müdahaleci olmayan. Çok çeşitli sistemler, talep edenin kimliğini onaylamak veya belirlemek için
güvenilir kişisel tanımlama şemaları gerektirir. Bu programların amacı, yalnızca meşru bir kullanıcının ve başka
hiç kimsenin sunulan hizmetlere erişmemesini sağlamaktır. Örneğin, binalara, bilgisayar sistemlerine, dizüstü
bilgisayarlara, cep telefonuna ve ATM’lere güvenli erişim dahildir. Bu sistemler, sağlam kişisel tanıma sistemleri
yokluğunda bir sahtekârın iradesine karşı savunmasızdır. Bu makale, yapay sinir ağları kullanan insan yüz
tanıma sistemini geliştirdi ve gösterdi; bu, 40 birey için yüz tanıma oranının, AT&T veritabanında yüzde 85,5 ile
400 kare için sonuç gösterdiğini gösteriyor. 

References

  • Kohonen, T., 1990. Self-Organizing Map. Proceedings of the IEEE, 78(9), 1464-1480
  • Germano, T., 1999. Self-Organizing Maps. Available in http://davis.wpi.edu/~matt/courses/soms/.
  • Kohonen,T., 1982. Self-Organizing formation of topologically correct feature maps. Biological Cybernetics, 43, 59-69.
  • Kumar, D., C.S. Rai and S. Kumar, 2008. Dimensionality Reduction using SOM based on Technique for Face Recognition. Journal of Multimedia, 3(1).
  • Zurada, J.M. 1992. Introduction to Artificial Neural Systems. Jaico Books, Mumbai.
  • Jamil, N., S. Lqbal and N. Iqbal, 2001. Face Recognition using Neural Networks. Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century, Lahore.
  • AT&T Laboratories Cambridge, The database of faces, Available in http://www.cl.cam.ac.uk/research/ dtg/attarchive/facesataglance.html.
  • Kumar, D., C.S. Rai and S. Kumar, 2005. Face Recognition using Self-Organizing Map and Principal Component Analysis, 2005 International Conference on Neural Networks and Brain, Beijing.
  • Lawrence, S., C.L.Giles,A.C.Tsoi andA.D. Back, 1997. Face Recognition: Convolutional Neural Network Approach. IEEE Transactions on Neural Networks, 8(1), 98-113.
  • Albawi, S., O. Bayat, S. Al-Azawi and O.N. Ucan, 2018. Social Touch Gesture Recognition Using Convolutional Neural Network. Computational Intelligence and Neuroscience, 2018, 6973103.
  • Mohammed,T.A.,A.Alazzawi, O.N.Uçan and O. Bayat, 2018. Neural Network Behavior Analysis Based on Transfer Functions MLP & RB in Face Recognition. Proceedings of the First International Conference on Data Science, E-learning and Information Systems, New York, 2018, 15:1–15:6.
There are 11 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence
Journal Section Research Article
Authors

ODAY Ahmed 0000-0001-9291-3330

Oğuz Bayat This is me 0000-0001-5988-8882

Osman Nuri Uçan 0000-0002-4100-0045

Publication Date February 11, 2020
Submission Date May 7, 2019
Acceptance Date December 24, 2019
Published in Issue Year 2019 Volume: 3 Issue: 2

Cite

APA Ahmed, O., Bayat, O., & Uçan, O. N. (2020). Pattern Recognition Using Neural Networks. AURUM Journal of Engineering Systems and Architecture, 3(2), 183-189.

.