Dissertation
BibTex RIS Cite

Developing Classifier for the Prediction of Students’ Performance Using Data Mining Classification Techniques

Year 2020, Volume: 4 Issue: 1, 73 - 91, 30.06.2020

Abstract

Data mining is used in academic institutions to predict the performance of students using classification techniques. These techniques are applied on students’ features in order to find reasonable patterns that can be used as basis for the prediction. The availability of students’ data in digital form and increase in processing power of computer systems makes this whole process a reality. There are numerous researches done in this direction in order to prevent massive failure of students. However, these researches are focused mainly on the prediction of students from other countries. Although there are efforts by few indigenous researchers to perform research in this direction, they have not explored the most widely used features. The main aim of this research is to develop a classifier using locally generated students’ features for accurate performance prediction. The students’ features that are collected from different sources underwent preprocessing, which later were introduced into the weka for feature selection and eventually for learning and testing. The naïve Bayes classifier which emerged as the most accurate classifier was selected and implemented in our performance predictor tool. The tool was tested using another set of features and the evaluation result shows that the tool can predict the performance of students in their future examinations.

References

  • Abu Saa, A. 2016. Educational Data Mining and Students' Performance Prediction. International Journal of Advanced Computer Science and Applications , 212-220. Anonymous. 2018. Demographic Data. from Ryte, available in http://en.ryte.com/wiki/Demographic_Data last accessed September, 2019.
  • Badr, G., Algobail, A., Almutairi, H., and Almutery, M. 2016. Predicting Students' Performance in Uninversity Courses: A Case Study and Tool in KSU Mathematics Department. Procedia Computer Science , 80-89.
  • Baker, R. S., and Yacef, K. 2009. The State of Educational Data Mining in 2009. A Review and Future Visions. Journal of Educational Data Mining , 3-16.
  • Baker, R. S. 2010. Data Mining for Education. International Encyclopedia of Education. Oxford, UK: Elsevier.
  • David, K. K., Adepeju, S. A., and Kolo, J. A. 2015. A Decision Tree Approach for Predicting Students Academic Performance. International Journal of Education and Management Engineering , 12-19.
  • Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. 1996. ‘From Data Mining to Knowledge Discovery in Databases”, AI Magazine , 37-54.
  • Han, J., and Kamber, M. 2006. Data Mining Concepts and Techniques. San Francisco: Morgan Kaufmann.
  • Joshi, R. 2017. Accuracy, Precision, Recall & F1 Score”, Interpretation of Performance Measures. available in blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/ last accessed March, 2019.
  • Mohamed, A. S., Husain, W., and Abdul Rahid, N. 2015. A Review on Predicting Student's Performance Using Data Mining Techniques. Procedia Computer Science , 414-422.
  • Oprea, C. 2014. Perfromance Evaluation of the Data Mining Classification Methods. Annals of the Constantin Brancusi Universtiy of Targu Jiu, Economy Series, Special Issue-Information Society and Sustainable development (pp. 249-253). ACADEMICA BRANCUSI PUBLISHER.
  • Papamitsiou, Z., and Economides, A. A. 2014. Learning Analytics and Educational Data Mining in Practice. A Systematic Review of Empirical Evidence. Educational Technology & Society , 49-64.
  • Pena-Ayala, A. 2014. Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications , 1432-1462.
  • Sen, U. K. 2015. A Brief Review Status of Educational Data Mining. International Journal of Advanced Research in Computer Science & Technology .
  • Smita, and Sharma, P. 2014. Use of Data Mining in Various Field. A Survey Paper. IOSR Journal of Computer Engineering , 18-21.
  • Sultana, S., Khan, S., and Abbas, M. A. 2017. Predicting performance of electrical engineering students using cognitive and non cognitive features for identification of potential dropouts. International Journal of Electrical Engineering Education , 1-14.

Veri Madenciliği Sınıflandırma Teknikleri Kullanarak Öğrenci Performansının Tahmini İçin Sınıflandırıcı Geliştirme

Year 2020, Volume: 4 Issue: 1, 73 - 91, 30.06.2020

Abstract

Veri madenciliği, akademik kurumlarda sınıflandırma tekniklerini kullanan öğrencilerin performansını tahmin etmek için kullanılır. Bu teknikler, tahmine temel olarak kullanılabilecek makul kalıpları bulmak için öğrencilerin özelliklerine uygulanır. Öğrencilerin verilerinin dijital formda bulunması ve bilgisayar sistemlerinin işlem gücünün artması, tüm süreci gerçeğe dönüştürmektedir. Öğrencilerin büyük başarısızlığını önlemek için bu yönde çok sayıda araştırma yapılmıştır. Bununla birlikte, bu araştırmalar esas olarak diğer ülkelerden gelen öğrencilerin tahminine odaklanmaktadır. Az sayıda yerli araştırmacının bu yönde araştırma yapma çabaları olmasına rağmen, en yaygın olarak kullanılan özellikleri araştırmamışlardır. Bu araştırmanın temel amacı, doğru performans tahmini için yerel olarak oluşturulan öğrencilerin özelliklerini kullanarak bir sınıflandırıcı geliştirmektir. Öğrencilerin farklı kaynaklardan toplanan özellikleri ön işleme tabi tutulmuş, daha sonra özellik seçimi ve nihayetinde öğrenme ve test için weka’ya dahil edilmiştir. En doğru sınıflandırıcı olarak ortaya çıkan saf bayes sınıflandırıcısı, performans tahmin aracımızda seçildi ve uygulandı. Araç, başka bir özellik seti kullanılarak test edildi ve değerlendirme sonucu, aracın öğrencilerin gelecekteki sınavlarındaki performansını tahmin edebileceğini gösteriyor. 

References

  • Abu Saa, A. 2016. Educational Data Mining and Students' Performance Prediction. International Journal of Advanced Computer Science and Applications , 212-220. Anonymous. 2018. Demographic Data. from Ryte, available in http://en.ryte.com/wiki/Demographic_Data last accessed September, 2019.
  • Badr, G., Algobail, A., Almutairi, H., and Almutery, M. 2016. Predicting Students' Performance in Uninversity Courses: A Case Study and Tool in KSU Mathematics Department. Procedia Computer Science , 80-89.
  • Baker, R. S., and Yacef, K. 2009. The State of Educational Data Mining in 2009. A Review and Future Visions. Journal of Educational Data Mining , 3-16.
  • Baker, R. S. 2010. Data Mining for Education. International Encyclopedia of Education. Oxford, UK: Elsevier.
  • David, K. K., Adepeju, S. A., and Kolo, J. A. 2015. A Decision Tree Approach for Predicting Students Academic Performance. International Journal of Education and Management Engineering , 12-19.
  • Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. 1996. ‘From Data Mining to Knowledge Discovery in Databases”, AI Magazine , 37-54.
  • Han, J., and Kamber, M. 2006. Data Mining Concepts and Techniques. San Francisco: Morgan Kaufmann.
  • Joshi, R. 2017. Accuracy, Precision, Recall & F1 Score”, Interpretation of Performance Measures. available in blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/ last accessed March, 2019.
  • Mohamed, A. S., Husain, W., and Abdul Rahid, N. 2015. A Review on Predicting Student's Performance Using Data Mining Techniques. Procedia Computer Science , 414-422.
  • Oprea, C. 2014. Perfromance Evaluation of the Data Mining Classification Methods. Annals of the Constantin Brancusi Universtiy of Targu Jiu, Economy Series, Special Issue-Information Society and Sustainable development (pp. 249-253). ACADEMICA BRANCUSI PUBLISHER.
  • Papamitsiou, Z., and Economides, A. A. 2014. Learning Analytics and Educational Data Mining in Practice. A Systematic Review of Empirical Evidence. Educational Technology & Society , 49-64.
  • Pena-Ayala, A. 2014. Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications , 1432-1462.
  • Sen, U. K. 2015. A Brief Review Status of Educational Data Mining. International Journal of Advanced Research in Computer Science & Technology .
  • Smita, and Sharma, P. 2014. Use of Data Mining in Various Field. A Survey Paper. IOSR Journal of Computer Engineering , 18-21.
  • Sultana, S., Khan, S., and Abbas, M. A. 2017. Predicting performance of electrical engineering students using cognitive and non cognitive features for identification of potential dropouts. International Journal of Electrical Engineering Education , 1-14.
There are 15 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Research Article
Authors

Abubakar Auwal 0000-0002-5162-6551

Abdullahi Abdu Ibrahim

Oğuz Bayat

Publication Date June 30, 2020
Submission Date December 11, 2019
Acceptance Date May 26, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Auwal, A., Ibrahim, A. A., & Bayat, O. (2020). Developing Classifier for the Prediction of Students’ Performance Using Data Mining Classification Techniques. AURUM Journal of Engineering Systems and Architecture, 4(1), 73-91.

.