Research Article
BibTex RIS Cite

Yeni Bir Robot Kolunun Tasarımı ve Analizi İçin Yüksek Hassasiyetli Mikro Kurgu Karıştırma

Year 2022, Volume: 6 Issue: 1, 75 - 91, 30.06.2022
https://doi.org/10.53600/ajesa.1067298

Abstract

Endüstriyel robotların imalat sanayiinde kullanımı, geleneksel üretim sürecini daha çeşitli ve sürdürülebilir modern üretim süreçlerine dönüştürmüştür. Bu makale, son derece hassas bir mikro sürtünme karıştırma kaynağı işlemini gerçekleştirecek olan 6-DOF robotik bir kolun tasarımını ve analizini sunmaktadır. Sürtünme karıştırma kaynağı devamlı gelişen bir teknolojidir. 1991 yılında icadından bu yana birçok sektörde metallerin birleştirilmesinde hayati bir rol oynayan sürtünme karıştırma kaynağının gelişiminin sonuçlarından biri de 2004 yılında icat edilen mikro sürtünme karıştırma kaynağıdır. Tasarlanan robot kol ile gerçekleştirilecek micro sürtünme karıştırma kaynağının, yüksek hassasiyet, sürdürülebilirlik, esneklik, zaman ve maliyet etkinliği sayesinde diğer geleneksel mikro sürtünme karıştırma kaynak makinelerine göre sahip olduğu birçok avantaj vardır. Robotik kolu iki aşamada tasarlanmıştır. İlk aşamada: sırasıyla uzuvların ve döner eklemlerin tasarımı ve uç işlevcinin gerekli hassasiyet ve doğrulukla yüksek torklarda çalışması için yüksek hızlı motor seçimi, ikinci aşamada ise; tasarlanan model, ANSYS yazılımı kullanılarak analiz edilmiştir. Bu aşamada, robotik kolun performansını çeşitli koşullar altında analiz etmek için geçici ve yapısal analizler yapılır.

References

  • Backer, D., and Jeroen. 2018. Stationary shoulder friction stir welding, TWI, available in: https://www.twi-global.com/what-we-do/research-and technology/technologies/welding-joining-and cutting/ friction-welding/friction-stir-welding/techniques/stationary-shoulder-friction-stir-welding, last accessed May 12 2021.
  • Backer, D, and Jeroen. 2016. Robotic Friction Stir Welding , TWI, available in: https://www.twi-global.com/what-we-do/research-and-technology/technologies/welding-joining-and-cutting/frictionwelding/friction-stir-welding/techniques/robotic-friction-stir-welding, last accessed May 12, 2021.
  • Bharat, P., R. Singh, and T. Campus. 2014. A Hand Book on Friction Stir Welding ,Late Shri Ram, YagyaSingh .
  • De Backer, J. 2014. “Feedback Control of Robotic Friction Stir Welding”. Working Paper No 4-2014. University West, Trollhättan, Sweden.
  • Fersini, D., and A. Pirondi. 2007. Fatigue behaviour of Al2024-T3 friction stir welded lap joints, Engineering Fracture Mechanics, vol. 74, pp. 468–480.
  • Joo Teh, N., H. Goddin, and A. Whitaker. 2011. Developments in micro applications of friction stir welding, TWI, available in: https://www.twi-global.com/technical-knowledge/published-papers/developments-in-micro-applications-of-friction-stir-welding, last accessed May 12, 2021.
  • Mishra, A. 2018. Micro Friction Stir Welding Process: State of the Art, Int. J. Curr. Eng. Technol., vol. 8, pp.02 .
  • Padhy, G.K., C.S. Wu, and S. Gao. 2018. Journal of Materials Science & Technology Friction stir based welding and processing technologies - processes , parameters , microstructures and applications: A review, vol. 34, pp. 1–38.
  • Salih, O.S., H. Ou, W. Sun, and D.G. Mccartney. 2015. A review of friction stir welding of aluminium matrix composites, Materials and Design,vol,86, pp 61-71.
  • Scialpi, A., M. De Giorgi, and L.A.C. De Filippis. 2008. Materials & Design Mechanical analysis of ultrathin friction stir welding joined sheets with dissimilar and similar materials, vol. 29, pp. 928–936.
  • Sen, M., S. Shankar, and S. Chattopadhyaya. 2019. Micro-friction stir welding (μFSW)-A review, in Materials Today: Proceedings, vol. 27, pp. 2469–2473.
  • Smith, C. B. 2000. Robotic friction stir welding a standard industrial robot, in 2nd Frict. Stir Weld. Int Symp., available in: http://www.frictionstirlink.com/publications/Pub062ndFSWSymposiumFSWSTDINDRobotpdf.pdf, last accessed May 25, 2021.
  • Zimmer-chevret, S., L. Langlois, J. Laye, J. Goussain, P. Martin, and R. Bigot. 2010. Qualification of a robotized Friction Stir Welding System - In: Internatıonal conference on scıentıfıc and technıcal advances on frıctıon stır weldıng and processıng, available in: https://sam.ensam.eu/bitstream/handle/10985/8774/LCFC_FSWP_2010_ZIMMER-CHEVRET.pdf?sequence=1&isAllowed=y, last accessed May 25, 2021.

Design and Analysis of a Novel Robotic Arm for High Precision Micro Friction Stir Welding

Year 2022, Volume: 6 Issue: 1, 75 - 91, 30.06.2022
https://doi.org/10.53600/ajesa.1067298

Abstract

The usage of industrial robots in manufacturing industries has revolutionized the traditional manufacturing process into more diverse and sustainable modern manufacturing processes. This paper presents the design and analysis of a 6-DOF robotic arm, which will perform a highly précised micro friction stir welding process. Friction stir welding is a technology that is constantly evolving. It has played a vital role in connecting metals in numerous sectors since its invention in 1991, and one of the outcomes of its development is micro friction stir welding, which was invented in 2004. There are numerous advantages that a designed robotic arm possesses over other traditional micro friction stir welding machines, which include high precision, sustainability, flexibility, time, and cost-effectiveness, along with a small operation area. The robotic arm is designed in two phases; the first stage is a design of links and revolute joints, respectively, and high-speed motor selection for the end effector to operate at high torques with required precision and accuracy. In the second phase, the designed model was analyzed using ANSYS software. In this phase, the transient and structural analyses are performed to analyze the performance of the robotic arm under various conditions.

References

  • Backer, D., and Jeroen. 2018. Stationary shoulder friction stir welding, TWI, available in: https://www.twi-global.com/what-we-do/research-and technology/technologies/welding-joining-and cutting/ friction-welding/friction-stir-welding/techniques/stationary-shoulder-friction-stir-welding, last accessed May 12 2021.
  • Backer, D, and Jeroen. 2016. Robotic Friction Stir Welding , TWI, available in: https://www.twi-global.com/what-we-do/research-and-technology/technologies/welding-joining-and-cutting/frictionwelding/friction-stir-welding/techniques/robotic-friction-stir-welding, last accessed May 12, 2021.
  • Bharat, P., R. Singh, and T. Campus. 2014. A Hand Book on Friction Stir Welding ,Late Shri Ram, YagyaSingh .
  • De Backer, J. 2014. “Feedback Control of Robotic Friction Stir Welding”. Working Paper No 4-2014. University West, Trollhättan, Sweden.
  • Fersini, D., and A. Pirondi. 2007. Fatigue behaviour of Al2024-T3 friction stir welded lap joints, Engineering Fracture Mechanics, vol. 74, pp. 468–480.
  • Joo Teh, N., H. Goddin, and A. Whitaker. 2011. Developments in micro applications of friction stir welding, TWI, available in: https://www.twi-global.com/technical-knowledge/published-papers/developments-in-micro-applications-of-friction-stir-welding, last accessed May 12, 2021.
  • Mishra, A. 2018. Micro Friction Stir Welding Process: State of the Art, Int. J. Curr. Eng. Technol., vol. 8, pp.02 .
  • Padhy, G.K., C.S. Wu, and S. Gao. 2018. Journal of Materials Science & Technology Friction stir based welding and processing technologies - processes , parameters , microstructures and applications: A review, vol. 34, pp. 1–38.
  • Salih, O.S., H. Ou, W. Sun, and D.G. Mccartney. 2015. A review of friction stir welding of aluminium matrix composites, Materials and Design,vol,86, pp 61-71.
  • Scialpi, A., M. De Giorgi, and L.A.C. De Filippis. 2008. Materials & Design Mechanical analysis of ultrathin friction stir welding joined sheets with dissimilar and similar materials, vol. 29, pp. 928–936.
  • Sen, M., S. Shankar, and S. Chattopadhyaya. 2019. Micro-friction stir welding (μFSW)-A review, in Materials Today: Proceedings, vol. 27, pp. 2469–2473.
  • Smith, C. B. 2000. Robotic friction stir welding a standard industrial robot, in 2nd Frict. Stir Weld. Int Symp., available in: http://www.frictionstirlink.com/publications/Pub062ndFSWSymposiumFSWSTDINDRobotpdf.pdf, last accessed May 25, 2021.
  • Zimmer-chevret, S., L. Langlois, J. Laye, J. Goussain, P. Martin, and R. Bigot. 2010. Qualification of a robotized Friction Stir Welding System - In: Internatıonal conference on scıentıfıc and technıcal advances on frıctıon stır weldıng and processıng, available in: https://sam.ensam.eu/bitstream/handle/10985/8774/LCFC_FSWP_2010_ZIMMER-CHEVRET.pdf?sequence=1&isAllowed=y, last accessed May 25, 2021.
There are 13 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Azhar Alghloom 0000-0002-1322-2732

Serdar Ay 0000-0002-1698-9832

Publication Date June 30, 2022
Submission Date February 3, 2022
Acceptance Date March 25, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite

APA Alghloom, A., & Ay, S. (2022). Design and Analysis of a Novel Robotic Arm for High Precision Micro Friction Stir Welding. AURUM Journal of Engineering Systems and Architecture, 6(1), 75-91. https://doi.org/10.53600/ajesa.1067298

.