Research Article
BibTex RIS Cite

Evrimsel Topolojik Optimizasyon Yöntemiyle Delikli Kirişlerin Bükülmesinin Boyut Analizi

Year 2022, Volume: 6 Issue: 2, 225 - 237, 31.12.2022
https://doi.org/10.53600/ajesa.1177628

Abstract

References

  • [1] Tsavdaridis, K. D., Kingman, J. J., & Toropov, V. V. (2015). Application of structural topology optimisation to perforated steel beams. Computers & structures, 158, 108-123.
  • [2] Srimani, S. S., & Das, P. K. (1978). Finite element analysis of castellated beams. Computers & structures, 9(2), 169-174.
  • [3] Erdal, F., Doğan, E., & Saka, M. P. (2011). Optimum design of cellular beams using harmony search and particle swarm optimizers. Journal of Constructional Steel Research, 67(2), 237-247.
  • [4] Sharifi, Y., Moghbeli, A., Hosseinpour, M., & Sharifi, H. (2020). Study of neural network models for the ultimate capacities of cellular steel beams. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(2), 579-589.
  • [5] Weidlich, C. M., Sotelino, E. D., & Cardoso, D. C. (2021). An application of the direct strength method to the design of castellated beams subject to flexure. Engineering Structures, 243, 112646.
  • [6] Knowles PR. Castellated beams. Proceedings of the ınstitution of civil engineers, 1991;90:521–36.
  • [7] Redwood, R. G. (1969). The strength of steel beams with unreinforced web holes. Civil engineering and public works review, 64(755), 559-562..
  • [8] Kerdal, D., & Nethercot, D. A. (1984). Failure modes for castellated beams. Journal of constructional steel research, 4(4), 295-315.
  • [9] Hosain, M. U., & Spiers, W. G. (1970). Experiments on castellated steel beams. Saskatoon, Canada: Department of Civil Engineering, University of Saskatchewan.
  • [10] Ward, J. K. (1990). Design of composite and non-composite cellular beams., Steel Construction Institute.
  • [11] Lagaros, N. D., Psarras, L. D., Papadrakakis, M., & Panagiotou, G. (2008). Optimum design of steel structures with web openings. Engineering structures, 30(9), 2528-2537.
  • [12] Belegundu, A. D., & Chandrupatla, T. R. (2019). Optimization concepts and applications in engineering. Cambridge University Press.
  • [13] Lagaros, N. D., Fragiadakis, M., Papadrakakis, M., & Tsompanakis, Y. (2006). Structural optimization: A tool for evaluating seismic design procedures. Engineering structures, 28(12), 1623-1633.
  • [14] Xie, Y. M., & Steven, G. P. (1993). A simple evolutionary procedure for structural optimization. Computers & structures, 49(5), 885-896.
  • [15] Eschenauer, H. A., Kobelev, V. V., & Schumacher, A. (1994). Bubble method for topology and shape optimization of structures. Structural optimization, 8(1), 42-51.
  • [16] Wang, M. Y., Wang, X., & Guo, D. (2003). A level set method for structural topology optimization. Computer methods in applied mechanics and engineering, 192(1-2), 227-246.
  • [17] Norato, J. A., Bendsøe, M. P., Haber, R. B., & Tortorelli, D. A. (2007). A topological derivative method for topology optimization. Structural and Multidisciplinary Optimization, 33(4-5), 375-386.
  • [18] Rostami, S. A. L., Kolahdooz, A., & Zhang, J. (2021). Robust topology optimization under material and loading uncertainties using an evolutionary structural extended finite element method. Engineering Analysis with Boundary Elements, 133, 61-70.
  • [19] Kingman, J. J., Tsavdaridis, K. D., & Toropov, V. V. (2013). The Application of Topology Optimisation to the Design of Steel I-Section Beam Web Openings. In The 14th International Conference of Civil, Structural and Environmental Engineering Computing
  • [20] Çiftçioğlu, A. Optimum design of steel frames with cellular beams Phd. Thesis 2017, https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp (no: 474138)
  • [21] http://www.ozcedemir.com.tr/ipe_avrupa_i_profil_kirisler-s29.html Access date:24/10/2021
  • [22] Sigmund, O., & Petersson, J. (1998). Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural optimization, 16(1), 68-75.
  • [23] Rozvany, G. I. (2009). A critical review of established methods of structural topology optimization. Structural and multidisciplinary optimization, 37(3), 217-237.
  • [24] Kerdal, D., & Nethercot, D. A. (1984). Failure modes for castellated beams. Journal of constructional steel research, 4(4), 295-315.
  • [25] Hosseinpour, M., & Sharifi, Y. (2021, February). Finite element modelling of castellated steel beams under lateral-distortional buckling mode. In Structures (Vol. 29, pp. 1507-1521).
  • [26] Kalaycıgil, M. Behaviours of castellated beams and desing factors Master Thesis 2007, Page:26 https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp (no: 177659)

Dimension Analysis of Bending Perforated Beams with the Evolutionary Topological Optimization Method

Year 2022, Volume: 6 Issue: 2, 225 - 237, 31.12.2022
https://doi.org/10.53600/ajesa.1177628

Abstract

The aim of this study is to determine the optimal shape and clearance of the web openings in order to both increase the carrying capacity and decrease the weight of classic perforated beams by using evolutionary topological optimization technique. The effects of the optimal shape and web openings has been obtained by the application of the evolutionary topological optimization through finite elements method, and then the obtained optimal beam has been compared with widely used perforated beams in the market by using stress and displacement analysis. The designed beam was seemed to have more advantages then the widely used ones in industry with a less weight and higher carrying capacity. With the topology optimization, the usual classic perforated beams’ geometry has been changed and stiffness was improved.

References

  • [1] Tsavdaridis, K. D., Kingman, J. J., & Toropov, V. V. (2015). Application of structural topology optimisation to perforated steel beams. Computers & structures, 158, 108-123.
  • [2] Srimani, S. S., & Das, P. K. (1978). Finite element analysis of castellated beams. Computers & structures, 9(2), 169-174.
  • [3] Erdal, F., Doğan, E., & Saka, M. P. (2011). Optimum design of cellular beams using harmony search and particle swarm optimizers. Journal of Constructional Steel Research, 67(2), 237-247.
  • [4] Sharifi, Y., Moghbeli, A., Hosseinpour, M., & Sharifi, H. (2020). Study of neural network models for the ultimate capacities of cellular steel beams. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(2), 579-589.
  • [5] Weidlich, C. M., Sotelino, E. D., & Cardoso, D. C. (2021). An application of the direct strength method to the design of castellated beams subject to flexure. Engineering Structures, 243, 112646.
  • [6] Knowles PR. Castellated beams. Proceedings of the ınstitution of civil engineers, 1991;90:521–36.
  • [7] Redwood, R. G. (1969). The strength of steel beams with unreinforced web holes. Civil engineering and public works review, 64(755), 559-562..
  • [8] Kerdal, D., & Nethercot, D. A. (1984). Failure modes for castellated beams. Journal of constructional steel research, 4(4), 295-315.
  • [9] Hosain, M. U., & Spiers, W. G. (1970). Experiments on castellated steel beams. Saskatoon, Canada: Department of Civil Engineering, University of Saskatchewan.
  • [10] Ward, J. K. (1990). Design of composite and non-composite cellular beams., Steel Construction Institute.
  • [11] Lagaros, N. D., Psarras, L. D., Papadrakakis, M., & Panagiotou, G. (2008). Optimum design of steel structures with web openings. Engineering structures, 30(9), 2528-2537.
  • [12] Belegundu, A. D., & Chandrupatla, T. R. (2019). Optimization concepts and applications in engineering. Cambridge University Press.
  • [13] Lagaros, N. D., Fragiadakis, M., Papadrakakis, M., & Tsompanakis, Y. (2006). Structural optimization: A tool for evaluating seismic design procedures. Engineering structures, 28(12), 1623-1633.
  • [14] Xie, Y. M., & Steven, G. P. (1993). A simple evolutionary procedure for structural optimization. Computers & structures, 49(5), 885-896.
  • [15] Eschenauer, H. A., Kobelev, V. V., & Schumacher, A. (1994). Bubble method for topology and shape optimization of structures. Structural optimization, 8(1), 42-51.
  • [16] Wang, M. Y., Wang, X., & Guo, D. (2003). A level set method for structural topology optimization. Computer methods in applied mechanics and engineering, 192(1-2), 227-246.
  • [17] Norato, J. A., Bendsøe, M. P., Haber, R. B., & Tortorelli, D. A. (2007). A topological derivative method for topology optimization. Structural and Multidisciplinary Optimization, 33(4-5), 375-386.
  • [18] Rostami, S. A. L., Kolahdooz, A., & Zhang, J. (2021). Robust topology optimization under material and loading uncertainties using an evolutionary structural extended finite element method. Engineering Analysis with Boundary Elements, 133, 61-70.
  • [19] Kingman, J. J., Tsavdaridis, K. D., & Toropov, V. V. (2013). The Application of Topology Optimisation to the Design of Steel I-Section Beam Web Openings. In The 14th International Conference of Civil, Structural and Environmental Engineering Computing
  • [20] Çiftçioğlu, A. Optimum design of steel frames with cellular beams Phd. Thesis 2017, https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp (no: 474138)
  • [21] http://www.ozcedemir.com.tr/ipe_avrupa_i_profil_kirisler-s29.html Access date:24/10/2021
  • [22] Sigmund, O., & Petersson, J. (1998). Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural optimization, 16(1), 68-75.
  • [23] Rozvany, G. I. (2009). A critical review of established methods of structural topology optimization. Structural and multidisciplinary optimization, 37(3), 217-237.
  • [24] Kerdal, D., & Nethercot, D. A. (1984). Failure modes for castellated beams. Journal of constructional steel research, 4(4), 295-315.
  • [25] Hosseinpour, M., & Sharifi, Y. (2021, February). Finite element modelling of castellated steel beams under lateral-distortional buckling mode. In Structures (Vol. 29, pp. 1507-1521).
  • [26] Kalaycıgil, M. Behaviours of castellated beams and desing factors Master Thesis 2007, Page:26 https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp (no: 177659)
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ender Çelik 0000-0002-1971-3620

Vedat Savaş 0000-0003-0563-1955

Publication Date December 31, 2022
Submission Date September 20, 2022
Acceptance Date October 27, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Çelik, E., & Savaş, V. (2022). Dimension Analysis of Bending Perforated Beams with the Evolutionary Topological Optimization Method. AURUM Journal of Engineering Systems and Architecture, 6(2), 225-237. https://doi.org/10.53600/ajesa.1177628