Research Article
BibTex RIS Cite

Kaotik Dinamik Sistem Tahmini İçin İleri Beslemeli ve Tekrarlayan Sinir Ağlarının Karşılaştırılması

Year 2019, , 31 - 44, 01.04.2019
https://doi.org/10.5824/1309-1581.2019.2.002.x

Abstract

Yapay sinir ağları global fonksiyon tahmininde genel olarak kabul görmüş başarılı bir araçtır. Bu nedenle, kaotik zaman serisi tahmininde şarılı bir yaklaşım olarak bir çok çalışmanın konusu olmuşlardır. Verilen bir zaman serisi için, Lyapunov üsteli, verilen serinin kaotik olup olmadığını karakterize etmekte iyi bir parametredir. Bu çalışmada,&nbsp üç değişik yapay sinir ağı mimarisini, değişik dinamik sistemlerden türetilmiş zaman serilerini tahmin etmede kullandık. Zaman serilerinin tahminine ek olarak, çalışılan sistemlerin Lyapunov üstellerini tek gizli katmanlı ileribeslemelisinir ağı kullanarak tahmin ettik.

References

  • Casdagli, M. (1989). Nonlinear prediction of chaoti time series. Physica D, 335-356.
  • de Oliveira, K. A., Vanucci, A., & da Silva, E. C. (2000). Using artificial neural networks to forecast chaotic time series. Physica A, 393-404.
  • de Oliveira, K., Vannucci, A., & da Silva, E. C. (2000). Using artificial neural networks to forecast chaotic time series. (284).
  • Eckman, J., & Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. Rev Mod Phys.
  • Eckmann, J.-P. &. (1987). Liapunov exponents from time series. Physical review. A, 4971- 4979.
  • Gencay, R., & Dechert, D. W. (1992). An algorithm for the n Lyapunov exponents of an n-dimensional unknown dynamical system. Physica D, 142-157.
  • Gencay, R., & Tung, L. (1997). Nonlinear modelling and prediction with feedforward and recurrent networks. Physica D: Nonlinear Phenomena, 119-134.
  • Takens, F. (1980). Detecting strange attractors in turbulance. Dynamical Systems and turbulance.
  • Wolf, A., Swift, J., Swinney, H., & Vastano, J. (1985). Determining Lyapunov exponents from atime series. Phys D, 285-317.

Comparison of Feedforward and Recurrent Neural Network in Forecasting Chaotic Dynamical System

Year 2019, , 31 - 44, 01.04.2019
https://doi.org/10.5824/1309-1581.2019.2.002.x

Abstract

Artificial neural networks are commonly accepted as a very successful tool for global function approximation. Because of this reason, they are considered as a good approach to forecasting chaotic time series in many studies. For a given time series, the Lyapunov exponent is a good parameter to characterize the series as chaotic or not. In this study, we use three different neural network architectures to test capabilities of the neural network in forecasting time series generated from different dynamical systems. In addition to forecasting time series, using the feedforward neural network with single hidden layer, Lyapunov exponents of the studied systems are forecasted.

References

  • Casdagli, M. (1989). Nonlinear prediction of chaoti time series. Physica D, 335-356.
  • de Oliveira, K. A., Vanucci, A., & da Silva, E. C. (2000). Using artificial neural networks to forecast chaotic time series. Physica A, 393-404.
  • de Oliveira, K., Vannucci, A., & da Silva, E. C. (2000). Using artificial neural networks to forecast chaotic time series. (284).
  • Eckman, J., & Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. Rev Mod Phys.
  • Eckmann, J.-P. &. (1987). Liapunov exponents from time series. Physical review. A, 4971- 4979.
  • Gencay, R., & Dechert, D. W. (1992). An algorithm for the n Lyapunov exponents of an n-dimensional unknown dynamical system. Physica D, 142-157.
  • Gencay, R., & Tung, L. (1997). Nonlinear modelling and prediction with feedforward and recurrent networks. Physica D: Nonlinear Phenomena, 119-134.
  • Takens, F. (1980). Detecting strange attractors in turbulance. Dynamical Systems and turbulance.
  • Wolf, A., Swift, J., Swinney, H., & Vastano, J. (1985). Determining Lyapunov exponents from atime series. Phys D, 285-317.
There are 9 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Engin Kandıran This is me

Avadis Hacınlıyan This is me

Publication Date April 1, 2019
Submission Date April 1, 2019
Published in Issue Year 2019

Cite

APA Kandıran, E., & Hacınlıyan, A. (2019). Comparison of Feedforward and Recurrent Neural Network in Forecasting Chaotic Dynamical System. AJIT-E: Academic Journal of Information Technology, 10(37), 31-44. https://doi.org/10.5824/1309-1581.2019.2.002.x