Research Article
BibTex RIS Cite

Yapay Sinir Ağları ve Karar Ağaçları Teknikleri Kullanarak Migren Teşhisi

Year 2014, , 79 - 90, 01.01.2014
https://doi.org/10.5824/1309-1581.2014.1.005.x

Abstract

Geniş çaplı tıp alanında bilgisayar destekli çalışmalar son yıllarda büyük ölçüde artmıştır. Ayrıca, birçok tıbbi kuruluşlar farklı hastalıklar için veritabanları inşa etmeye devam etmektedir. Hastalığın belirlenmesi için yapay zeka tekniklerine hazırlanan bu tıp veritabanları paha biçilmez değerdedir. Bu çalışmada karar ağaçlarından Gini alogritması ve yapay sinir ağlarından dağıtılmış gecikme ağı, olasılık sinir ağı, ileri beslemeli ağ ve öğrenme vector nicelemesi migren ve olası migren teşhis amacıyla kullanılmıştır. Bu tekniklerin performansı karşılaştırılmış ve dağıtılmış gecikme ağ tekniği 95.45% doğruluk ile iyi tanı olarak görülmüştür.

References

  • 1. Alkim, E., Gurbuz, E., & Kilic, E. (2012). A fast and adaptive automated disease diagnosis method with an innovative neural network model. Neural Netw, 33, 88-96. doi: 10.1016/j.neunet.2012.04.010
  • 2. Beale, M. H., Hagan, M. T., & Demuth, H. B. (2014). Neural Network Toolbox™ User’s Guide (Vol. R2014a): Matlab MathWorks.
  • 3. Celik, U. Excel file for Gini dataset. from http://migbase.com/giniResults.xls
  • 4. Cruz-Correia, R., Vieira-Marques, P., Costa, P., Ferreira, A., Oliveira-Palhares, E., Ara, F., . . . CostaPereira, A. (2005). Integration of hospital data using agent technologies - A case study. AI Commun., 18(3), 191-200.
  • 5. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recogn. Lett., 27(8), 861-874. doi: 10.1016/j.patrec.2005.10.010
  • 6. Gallai, V., Sarchielli, P., Alberti, A., Pedini, M., Gallai, B., Rossi, C., . . . The Collaborative Group for the Application of, I. H. S. C. o. t. I. S. f. t. S. o. H. (2002). Application of the 1988 International Headache Society Diagnostic Criteria in Nine Italian Headache Centers using a Computerized Structured Record. Headache: The Journal of Head and Face Pain, 42(10), 1016-1024. doi: 10.1046/j.1526-4610.2002.02231.x
  • 7. Karlı, N., Zarifoğlu, M., Ertaş, M., Saip, S., Öztürk, V., Bıçakçı, Ş., . . . Uzuner, N. (2006). Economic impact of primary headaches in Turkey: a university hospital based study: part II. The Journal of Headache and Pain, 7(2), 75-82. doi: 10.1007/s10194-006-0273-7
  • 8. Kohonen, T. (1984). Self-organization and associative memory: Springer-Verlag.
  • 9. Kohonen, T., Barna, G., & Chrisley, R. (1988, 24-27 July 1988). Statistical pattern recognition with neural networks: benchmarking studies. Paper presented at the Neural Networks, 1988., IEEE International Conference on.
  • 10. Kopec, D., Shagas, G., Selman, J., Reinharth, D., & Tamang, S. (2004). Development of an Expert System for Aiding Migraine Diagnosis. The Journal of Information Technology in Healthcare, 2(5), 355-364.
  • 11. Kwon, P.-J., Kim, H., & Kim, U. (2009). A study on the web-based intelligent self-diagnosis medical system. Advances in Engineering Software, 40(6), 402-406. doi: http://dx.doi.org/10.1016/j.advengsoft.2008.07.004
  • 12. Maizels, M., & Wolfe, W. J. (2008). An expert system for headache diagnosis: the Computerized Headache Assessment tool (CHAT). Headache, 48(1), 72-78.
  • 13. Mendes, K. B., Fiuza, R. M., Teresinha, M., & Steiner, A. (2010). Diagnosis of Headache using Artificial Neural Networks. J. Comput. Sci, 10(7), 172-178.
  • 14. Olesen, J. (2004). Preface to the second edition. Cephalalgia, 24, 9-10. doi: 10.1111/j.1468- 2982.2003.00824.x
  • 15. Özkan, Y. (2008). Veri madenciliği yöntemleri: Papatya Yayıncılık.
  • 16. Simone, R., Marano, E., & Bonavita, V. (2004). Towards the computerisation of ANIRCEF Headache Centres. Presentation of AIDA CEFALEE, a computer assisted diagnosis database for the management of headache patients. Neurological Sciences, 25(3), s218-s222. doi: 10.1007/s10072-004-0290-8
  • 17. Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3(1), 109-118. doi: http://dx.doi.org/10.1016/0893-6080(90)90049-Q
  • 18. Taşdelen, B., Helvaci, S., Kaleağasi, H., & Özge, A. (2009). Artificial neural network analysis for prediction of headache prognosis in elderly patients. Turkish Journal of Medical Sciences, 39(1), 5-12.
  • 19. Weinstein, S., Obuchowski, N. A., & Lieber, M. L. (2005). Clinical Evaluation of Diagnostic Tests. American Journal of Roentgenology, 184(1), 14-19. doi: 10.2214/ajr.184.1.01840014

Migraine Diagnosis by Using Artificial Neural Networks and Decision Tree Techniques

Year 2014, , 79 - 90, 01.01.2014
https://doi.org/10.5824/1309-1581.2014.1.005.x

Abstract

Computer supported studies in wide range of medical fields have been greatly expanded in recent years. Also, many medical organizations continue to build databases for different diseases. This medical database for artificial intelligence techniques for the determination of the disease is invaluable. As a subset, artificial neural networks and decision tree techniques are used for disease diagnosis. In this study Gini algorithm from decision trees and distributed delay network, probabilistic neural network, feed-forward network and learning vector quantization from artificial neural network have been used in order to diagnose migraine and probable migraine. Performance of these techniques has been compared and distributed delay network technique is observed as the best diagnosis with 95.45% accuracy.

References

  • 1. Alkim, E., Gurbuz, E., & Kilic, E. (2012). A fast and adaptive automated disease diagnosis method with an innovative neural network model. Neural Netw, 33, 88-96. doi: 10.1016/j.neunet.2012.04.010
  • 2. Beale, M. H., Hagan, M. T., & Demuth, H. B. (2014). Neural Network Toolbox™ User’s Guide (Vol. R2014a): Matlab MathWorks.
  • 3. Celik, U. Excel file for Gini dataset. from http://migbase.com/giniResults.xls
  • 4. Cruz-Correia, R., Vieira-Marques, P., Costa, P., Ferreira, A., Oliveira-Palhares, E., Ara, F., . . . CostaPereira, A. (2005). Integration of hospital data using agent technologies - A case study. AI Commun., 18(3), 191-200.
  • 5. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recogn. Lett., 27(8), 861-874. doi: 10.1016/j.patrec.2005.10.010
  • 6. Gallai, V., Sarchielli, P., Alberti, A., Pedini, M., Gallai, B., Rossi, C., . . . The Collaborative Group for the Application of, I. H. S. C. o. t. I. S. f. t. S. o. H. (2002). Application of the 1988 International Headache Society Diagnostic Criteria in Nine Italian Headache Centers using a Computerized Structured Record. Headache: The Journal of Head and Face Pain, 42(10), 1016-1024. doi: 10.1046/j.1526-4610.2002.02231.x
  • 7. Karlı, N., Zarifoğlu, M., Ertaş, M., Saip, S., Öztürk, V., Bıçakçı, Ş., . . . Uzuner, N. (2006). Economic impact of primary headaches in Turkey: a university hospital based study: part II. The Journal of Headache and Pain, 7(2), 75-82. doi: 10.1007/s10194-006-0273-7
  • 8. Kohonen, T. (1984). Self-organization and associative memory: Springer-Verlag.
  • 9. Kohonen, T., Barna, G., & Chrisley, R. (1988, 24-27 July 1988). Statistical pattern recognition with neural networks: benchmarking studies. Paper presented at the Neural Networks, 1988., IEEE International Conference on.
  • 10. Kopec, D., Shagas, G., Selman, J., Reinharth, D., & Tamang, S. (2004). Development of an Expert System for Aiding Migraine Diagnosis. The Journal of Information Technology in Healthcare, 2(5), 355-364.
  • 11. Kwon, P.-J., Kim, H., & Kim, U. (2009). A study on the web-based intelligent self-diagnosis medical system. Advances in Engineering Software, 40(6), 402-406. doi: http://dx.doi.org/10.1016/j.advengsoft.2008.07.004
  • 12. Maizels, M., & Wolfe, W. J. (2008). An expert system for headache diagnosis: the Computerized Headache Assessment tool (CHAT). Headache, 48(1), 72-78.
  • 13. Mendes, K. B., Fiuza, R. M., Teresinha, M., & Steiner, A. (2010). Diagnosis of Headache using Artificial Neural Networks. J. Comput. Sci, 10(7), 172-178.
  • 14. Olesen, J. (2004). Preface to the second edition. Cephalalgia, 24, 9-10. doi: 10.1111/j.1468- 2982.2003.00824.x
  • 15. Özkan, Y. (2008). Veri madenciliği yöntemleri: Papatya Yayıncılık.
  • 16. Simone, R., Marano, E., & Bonavita, V. (2004). Towards the computerisation of ANIRCEF Headache Centres. Presentation of AIDA CEFALEE, a computer assisted diagnosis database for the management of headache patients. Neurological Sciences, 25(3), s218-s222. doi: 10.1007/s10072-004-0290-8
  • 17. Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3(1), 109-118. doi: http://dx.doi.org/10.1016/0893-6080(90)90049-Q
  • 18. Taşdelen, B., Helvaci, S., Kaleağasi, H., & Özge, A. (2009). Artificial neural network analysis for prediction of headache prognosis in elderly patients. Turkish Journal of Medical Sciences, 39(1), 5-12.
  • 19. Weinstein, S., Obuchowski, N. A., & Lieber, M. L. (2005). Clinical Evaluation of Diagnostic Tests. American Journal of Roentgenology, 184(1), 14-19. doi: 10.2214/ajr.184.1.01840014
There are 19 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Ufuk Celık This is me

Nilufer Yurtay This is me

Ziynet Pamuk This is me

Publication Date January 1, 2014
Submission Date January 1, 2014
Published in Issue Year 2014

Cite

APA Celık, U., Yurtay, N., & Pamuk, Z. (2014). Migraine Diagnosis by Using Artificial Neural Networks and Decision Tree Techniques. AJIT-E: Academic Journal of Information Technology, 5(14), 79-90. https://doi.org/10.5824/1309-1581.2014.1.005.x