Research Article
BibTex RIS Cite

Isolation of Distinct Lactobacillaceae spp. with Functional Characteristics from Traditional Sourdough Samples

Year 2022, , 211 - 219, 11.10.2022
https://doi.org/10.24323/akademik-gida.1186584

Abstract

Lactic Acid Bacteria (LAB) were isolated from traditional sourdough samples, and functional properties of selected LAB species were determined. Five distinct strains Limosilactobacillus fermentum LR1, Lacticaseibacillus rhamnosus LR2, Levilactobacillus senmaizukei CE37, Lactiplantibacillus plantarum CE48 and Limosilactobacillus reuteri KD44A were identified following the genotypic discrimination of hundred isolates. Presence of bacteriocin genes in identified species was determined by PCR, and sourdough isolates have been shown to carry bacteriocin genes although they vary according to species. Exopolysaccharide (EPS) production tests showed that the amount of EPS production varies in different media and different incubation conditions. Antimicrobial effects of 5 different LAB species were determined against Bacillus cereus BC 6830, which cause rop problems, and other pathogen species and also molds isolated from bread. Amylolytic activities of isolates, which are important in terms of technological roles, were determined genotypically and phenotypically. Finally, the phytase and phosphatase activities of these species were studied. This study was aimed to unveil the functional sourdough LAB species to be used for industrial purposes.

Supporting Institution

Bayburt University Scientific Research Projects Unit

Project Number

2017/02-69001-21

Thanks

This study was financially supported by Bayburt University Scientific Research Projects Unit with the project number of 2017/02-69001-21.

References

  • [1] Ottogalli, G., Galli, A., Foschino, R. (1996). Italian bakery products obtained with sourdough: characterization of the typical microflora. Advances in Food Sciences, 18(5), 131-144.
  • [2] De Vuyst, L., Schrijvers, V., Paramithiotis, S., Hoste, B., Vancanneyt, M., Swings, J., Kalantzopoulos, G., Tsakalidou, E., Messens, W. (2002). The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. Applied and Environmental Microbiology, 68(12), 6059-6069.
  • [3] De Vuyst, L., Neysens, P. (2005). The sourdough microflora: biodiversity and metabolic interactions. Trends in Food Science & Technology, 16(1-3), 43-56.
  • [4] Gänzle, M.G. (2014). Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology, 37, 2-10.
  • [5] Gänzle, M.G., Loponen, J., Gobbetti, M. (2008). Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in Food Science & Technology, 19(10), 513-521.
  • [6] Fretzdorff, B., Brummer, J.M. (1992). Reduction of phytic acid during breadmaking of whole-meal breads. Cereal Chemistry, 69(3), 266-270.
  • [7] Messens, W., De Vuyst, L. (2002). Inhibitory substances produced by Lactobacilli isolated from sourdoughs-a review. International Journal of Food Microbiology, 72(1-2), 31-43.
  • [8] Demirbaş, F., İspirli, H., Kurnaz, A.A., Yilmaz, M.T., Dertli, E. (2017). Antimicrobial and functional properties of lactic acid bacteria isolated from sourdoughs. LWT-Food Science and Technology, 79, 361-366.
  • [9] Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A., Gobbetti, M. (2000). Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied and Environmental Microbiology, 66(9), 4084-4090.
  • [10] Magnusson, J., Schnürer, J. (2001). Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Applied and Environmental Microbiology, 67(1), 1-5.
  • [11] Corsetti, A., Gobbetti, M., De Marco, B., Balestrieri, F., Paoletti, F., Russi, L., Rossi, J. (2000). Combined effect of sourdough lactic acid bacteria and additives on bread firmness and staling. Journal of Agricultural and Food Chemistry, 48(7), 3044-3051.
  • [12] Galle, S., Arendt, E.K. (2014). Exopolysaccharides from sourdough lactic acid bacteria. Critical Reviews in Food Science and Nutrition, 54(7), 891-901.
  • [13] İspirli, H., Özmen, D., Yılmaz, M.T., Sağdıç, O., Dertli, E. (2020). Impact of glucan type exopolysaccharide (EPS) production on technological characteristics of sourdough bread. Food Control, 107, 106812.
  • [14] Palacios, M.C., Haros, M., Sanz, Y., Rosell, C.M. (2008). Selection of lactic acid bacteria with high phytate degrading activity for application in whole wheat breadmaking. LWT-Food Science and Technology, 41(1), 82-92.
  • [15] Dertli, E., Mercan, E., Arıcı, M., Yılmaz, M.T., Sağdıç, O. (2016). Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT-Food Science and Technology, 71, 116-124.
  • [16] Baker, G.C., Smith, J.J., Cowan, D.A. (2003). Review and re-analysis of domain-specific 16S primers. Journal of Microbiological Methods, 55(3), 541-555.
  • [17] İspirli, H., Demirbaş, F., Dertli, E. (2015). Characterization of functional properties of Enterococcus faecium strains isolated from human gut. Canadian Journal of Microbiology, 61(11), 861-870.
  • [18] Fontana, C., Cocconcelli, P.S., Vignolo, G., Saavedra, L. (2015). Occurrence of antilisterial structural bacteriocins genes in meat borne lactic acid bacteria. Food Control, 47, 53-59.
  • [19] Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.
  • [20] Oguntoyinbo, F.A., Narbad, A. (2012). Molecular characterization of lactic acid bacteria and in situ amylase expression during traditional fermentation of cereal foods. Food Microbiology, 31(2), 254-262.
  • [21] Raghavendra, P., Halami, P.M. (2009). Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. International Journal of Food Microbiology, 133(1-2), 129-134.
  • [22] Randazzo, C.L., Heilig, H., Restuccia, C., Giudici, P., Caggia, C. (2005). Bacterial population in traditional sourdough evaluated by molecular methods. Journal of Applied Microbiology, 99(2), 251-258.
  • [23] Spicher, G., Lönner, C. (1985). Die Mikroflora des Sauerteiges XXI. Mitteilung: Die in Sauerteigen schwedischer Bäckereien vorkommenden Lactobacillen. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 181(1), 9-13.
  • [24] Bakırcı, F., Köse, E. (2017). Ekşi hamurlardan laktik asit bakterileri ve mayaların izolasyonu ve tanımlanması. Akademik Gıda, 15(2), 149-154.
  • [25] Hiraga, K., Ueno, Y., Sukontasing, S., Tanasupawat, S., Oda, K. (2008). Lactobacillus senmaizukei sp. nov., isolated from Japanese pickle. International Journal of Systematic and Evolutionary Microbiology, 58(7), 1625-1629.
  • [26] Corsetti, A., Gobbetti, M., Smacchi, E. (1996). Antibacterial activity of sourdough lactic acid bacteria: isolation of a bacteriocin-like inhibitory substance from Lactobacillus sanfrancisco C57. Food Microbiology, 13(6), 447-456.
  • [27] Şimşek, Ö., Çon, A.H., Tulumoğlu, Ş. (2006). Isolating lactic starter cultures with antimicrobial activity for sourdough processes. Food Control, 17(4), 263-270.
  • [28] Schillinger, U. (1989). Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology, 55(8), 1901-1906.
  • [29] Nissen-Meyer, J., Hauge, H.H., Fimland, G., Eijsink, V.G.H., Nes, I.F. (1997). Ribosomally synthesized antimicrobial peptides produced by lactic acid bacteria: their function, structure, biogenesis, and their mechanism of action. Recent Res. Dev. Microbiol., 1, 141-154.
  • [30] Tichaczek, P.S., Nissen-Meyer, J., Nes, I.F., Vogel, R.F., Hammes, W.P. (1992). Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. Systematic and Applied Microbiology, 15(3), 460-468.
  • [31] Kok, J., Holo, H., Van Belkum, M.J., Haandrikman, A.J., Nes, I.F. (1993). Nonnisin bacteriocins in lactococci: biochemistry, genetics, and mode of action. In Bacteriocins of lactic acid bacteria (pp. 121-150). Academic Press.
  • [32] Gerez, C.L., Torino, M.I., Rollán, G., de Valdez, G.F. (2009). Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control, 20(2), 144-148.
  • [33] Gobbetti, M. (1998). The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends in Food Science & Technology, 9(7), 267-274.
  • [34] Corsetti, A., Gobbetti, M., Rossi, J., Damiani, P. (1998). Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Applied Microbiology and Biotechnology, 50(2), 253-256.
  • [35] Stiles, J., Penkar, S., Plocková, M., Chumchalova, J., Bullerman, L.B. (2002). Antifungal activity of sodium acetate and Lactobacillus rhamnosus. Journal of Food Protection, 65(7), 1188-1191.
  • [36] Laitila, A., Alakomi, H.L., Raaska, L., Mattila‐Sandholm, T., Haikara, A. (2002). Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. Journal of Applied Microbiology, 93(4), 566-576.
  • [37] Sangmanee, P., Hongpattarakere, T. (2014). Inhibitory of multiple antifungal components produced by Lactobacillus plantarum K35 on growth, aflatoxin production and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Control, 40, 224-233.
  • [38] Fukao, M., Yajima, N. (2012). Assessment of antibiotic resistance in probiotic lactobacilli. IntechOpen.
  • [39] De Vuyst, L., Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 23(2), 153-177.
  • [40] Sanni, A.I., Morlon-Guyot, J., Guyot, J.P. (2002). New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. International Journal of Food Microbiology, 72(1-2), 53-62.
  • [41] Wodzinski, R.J., Ullah, A.H.J. (1996). Phytase. Advances in Applied Microbiology, 42, 263-302.
  • [42] Türk, M., Sandberg, A.S. (1992). Phytate degradation during breadmaking: effect of phytase addition. Journal of Cereal Science, 15(3), 281-294.
  • [43] Nuobariene, L., Cizeikiene, D., Gradzeviciute, E., Hansen, Å.S., Rasmussen, S.K., Juodeikiene, G., Vogensen, F.K. (2015). Phytase-active lactic acid bacteria from sourdoughs: Isolation and identification. LWT-Food Science and Technology, 63(1), 766-772.
  • [44] Goswami, G., Bora, S.S., Parveen, A., Boro, R.C., Barooah, M. (2017). Identification and functional properties of dominant lactic acid bacteria isolated from Kahudi, a traditional rapeseed fermented food product of Assam, India. Journal of Ethnic Foods, 4(3), 187-197.

Geleneksel Ekşi Hamur Örneklerinden Fonksiyonel Özelliklere Sahip Farklı Lactobacillaceae spp. İzolasyonu

Year 2022, , 211 - 219, 11.10.2022
https://doi.org/10.24323/akademik-gida.1186584

Abstract

Bu çalışmada geleneksel ekşi hamur örneklerinden Laktik Asit Bakterileri (LAB) izole edilerek tanımlanmış ve tanımlanan LAB türlerinin fonskiyonel nitelikleri tespit edilmiştir. Ekşi hamur örneklerinden toplamda 100 adet izolat elde edilerek izolatların genotipik ayrımı yapılmış ve sonuç olarak Limosilactobacillus fermentum LR1, Lacticaseibacillus rhamnosus LR2, Levilactobacillus senmaizukei CE37, Lactiplantibacillus plantarum CE48 ve Limosilactobacillus reuteri KD44A suşları tanımlanmıştır. Bu suşlarda bakteriyosin genlerinin varlığı PCR metodu ile test edilmiş ve suşlarda farklı bakteriyosin genlerinin varlığı açığa çıkarılmıştır. Ekzopolisakkarit (EPS) üretim testleri, bu suşların farklı koşullarda farklı oranda EPS üretim kabiliyetine sahip olduğunu göstermiştir. Yapılan antimikrobiyal testleri sonucunda test edilen suşların rop etmeni Bacillus cereus BC 6830 dahil farklı patojenlere ve ekmek küflerine karşı antimikrobiyal etkiye sahip olduğu ortaya konmuştur. Ekmek teknolojisi açısından bir diğer önemli teknolojik fonksiyon olan amilolitik aktivite bu suşlarda genotipik ve fenotipik olarak belirlenmiş ve son olarak suşların fosfotaz ve fitaz aktiviteleri değerlendirilmiştir. Bu çalışmada fonksiyonel etkiye sahip ekşi hamur orjinli LAB suşlarının endüstriyel olarak değerlendirilebilirliklerinin test edilmesi amaçlanmıştır.

Project Number

2017/02-69001-21

References

  • [1] Ottogalli, G., Galli, A., Foschino, R. (1996). Italian bakery products obtained with sourdough: characterization of the typical microflora. Advances in Food Sciences, 18(5), 131-144.
  • [2] De Vuyst, L., Schrijvers, V., Paramithiotis, S., Hoste, B., Vancanneyt, M., Swings, J., Kalantzopoulos, G., Tsakalidou, E., Messens, W. (2002). The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. Applied and Environmental Microbiology, 68(12), 6059-6069.
  • [3] De Vuyst, L., Neysens, P. (2005). The sourdough microflora: biodiversity and metabolic interactions. Trends in Food Science & Technology, 16(1-3), 43-56.
  • [4] Gänzle, M.G. (2014). Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology, 37, 2-10.
  • [5] Gänzle, M.G., Loponen, J., Gobbetti, M. (2008). Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in Food Science & Technology, 19(10), 513-521.
  • [6] Fretzdorff, B., Brummer, J.M. (1992). Reduction of phytic acid during breadmaking of whole-meal breads. Cereal Chemistry, 69(3), 266-270.
  • [7] Messens, W., De Vuyst, L. (2002). Inhibitory substances produced by Lactobacilli isolated from sourdoughs-a review. International Journal of Food Microbiology, 72(1-2), 31-43.
  • [8] Demirbaş, F., İspirli, H., Kurnaz, A.A., Yilmaz, M.T., Dertli, E. (2017). Antimicrobial and functional properties of lactic acid bacteria isolated from sourdoughs. LWT-Food Science and Technology, 79, 361-366.
  • [9] Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A., Gobbetti, M. (2000). Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied and Environmental Microbiology, 66(9), 4084-4090.
  • [10] Magnusson, J., Schnürer, J. (2001). Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Applied and Environmental Microbiology, 67(1), 1-5.
  • [11] Corsetti, A., Gobbetti, M., De Marco, B., Balestrieri, F., Paoletti, F., Russi, L., Rossi, J. (2000). Combined effect of sourdough lactic acid bacteria and additives on bread firmness and staling. Journal of Agricultural and Food Chemistry, 48(7), 3044-3051.
  • [12] Galle, S., Arendt, E.K. (2014). Exopolysaccharides from sourdough lactic acid bacteria. Critical Reviews in Food Science and Nutrition, 54(7), 891-901.
  • [13] İspirli, H., Özmen, D., Yılmaz, M.T., Sağdıç, O., Dertli, E. (2020). Impact of glucan type exopolysaccharide (EPS) production on technological characteristics of sourdough bread. Food Control, 107, 106812.
  • [14] Palacios, M.C., Haros, M., Sanz, Y., Rosell, C.M. (2008). Selection of lactic acid bacteria with high phytate degrading activity for application in whole wheat breadmaking. LWT-Food Science and Technology, 41(1), 82-92.
  • [15] Dertli, E., Mercan, E., Arıcı, M., Yılmaz, M.T., Sağdıç, O. (2016). Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT-Food Science and Technology, 71, 116-124.
  • [16] Baker, G.C., Smith, J.J., Cowan, D.A. (2003). Review and re-analysis of domain-specific 16S primers. Journal of Microbiological Methods, 55(3), 541-555.
  • [17] İspirli, H., Demirbaş, F., Dertli, E. (2015). Characterization of functional properties of Enterococcus faecium strains isolated from human gut. Canadian Journal of Microbiology, 61(11), 861-870.
  • [18] Fontana, C., Cocconcelli, P.S., Vignolo, G., Saavedra, L. (2015). Occurrence of antilisterial structural bacteriocins genes in meat borne lactic acid bacteria. Food Control, 47, 53-59.
  • [19] Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.
  • [20] Oguntoyinbo, F.A., Narbad, A. (2012). Molecular characterization of lactic acid bacteria and in situ amylase expression during traditional fermentation of cereal foods. Food Microbiology, 31(2), 254-262.
  • [21] Raghavendra, P., Halami, P.M. (2009). Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. International Journal of Food Microbiology, 133(1-2), 129-134.
  • [22] Randazzo, C.L., Heilig, H., Restuccia, C., Giudici, P., Caggia, C. (2005). Bacterial population in traditional sourdough evaluated by molecular methods. Journal of Applied Microbiology, 99(2), 251-258.
  • [23] Spicher, G., Lönner, C. (1985). Die Mikroflora des Sauerteiges XXI. Mitteilung: Die in Sauerteigen schwedischer Bäckereien vorkommenden Lactobacillen. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 181(1), 9-13.
  • [24] Bakırcı, F., Köse, E. (2017). Ekşi hamurlardan laktik asit bakterileri ve mayaların izolasyonu ve tanımlanması. Akademik Gıda, 15(2), 149-154.
  • [25] Hiraga, K., Ueno, Y., Sukontasing, S., Tanasupawat, S., Oda, K. (2008). Lactobacillus senmaizukei sp. nov., isolated from Japanese pickle. International Journal of Systematic and Evolutionary Microbiology, 58(7), 1625-1629.
  • [26] Corsetti, A., Gobbetti, M., Smacchi, E. (1996). Antibacterial activity of sourdough lactic acid bacteria: isolation of a bacteriocin-like inhibitory substance from Lactobacillus sanfrancisco C57. Food Microbiology, 13(6), 447-456.
  • [27] Şimşek, Ö., Çon, A.H., Tulumoğlu, Ş. (2006). Isolating lactic starter cultures with antimicrobial activity for sourdough processes. Food Control, 17(4), 263-270.
  • [28] Schillinger, U. (1989). Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology, 55(8), 1901-1906.
  • [29] Nissen-Meyer, J., Hauge, H.H., Fimland, G., Eijsink, V.G.H., Nes, I.F. (1997). Ribosomally synthesized antimicrobial peptides produced by lactic acid bacteria: their function, structure, biogenesis, and their mechanism of action. Recent Res. Dev. Microbiol., 1, 141-154.
  • [30] Tichaczek, P.S., Nissen-Meyer, J., Nes, I.F., Vogel, R.F., Hammes, W.P. (1992). Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. Systematic and Applied Microbiology, 15(3), 460-468.
  • [31] Kok, J., Holo, H., Van Belkum, M.J., Haandrikman, A.J., Nes, I.F. (1993). Nonnisin bacteriocins in lactococci: biochemistry, genetics, and mode of action. In Bacteriocins of lactic acid bacteria (pp. 121-150). Academic Press.
  • [32] Gerez, C.L., Torino, M.I., Rollán, G., de Valdez, G.F. (2009). Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control, 20(2), 144-148.
  • [33] Gobbetti, M. (1998). The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends in Food Science & Technology, 9(7), 267-274.
  • [34] Corsetti, A., Gobbetti, M., Rossi, J., Damiani, P. (1998). Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Applied Microbiology and Biotechnology, 50(2), 253-256.
  • [35] Stiles, J., Penkar, S., Plocková, M., Chumchalova, J., Bullerman, L.B. (2002). Antifungal activity of sodium acetate and Lactobacillus rhamnosus. Journal of Food Protection, 65(7), 1188-1191.
  • [36] Laitila, A., Alakomi, H.L., Raaska, L., Mattila‐Sandholm, T., Haikara, A. (2002). Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. Journal of Applied Microbiology, 93(4), 566-576.
  • [37] Sangmanee, P., Hongpattarakere, T. (2014). Inhibitory of multiple antifungal components produced by Lactobacillus plantarum K35 on growth, aflatoxin production and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Control, 40, 224-233.
  • [38] Fukao, M., Yajima, N. (2012). Assessment of antibiotic resistance in probiotic lactobacilli. IntechOpen.
  • [39] De Vuyst, L., Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 23(2), 153-177.
  • [40] Sanni, A.I., Morlon-Guyot, J., Guyot, J.P. (2002). New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. International Journal of Food Microbiology, 72(1-2), 53-62.
  • [41] Wodzinski, R.J., Ullah, A.H.J. (1996). Phytase. Advances in Applied Microbiology, 42, 263-302.
  • [42] Türk, M., Sandberg, A.S. (1992). Phytate degradation during breadmaking: effect of phytase addition. Journal of Cereal Science, 15(3), 281-294.
  • [43] Nuobariene, L., Cizeikiene, D., Gradzeviciute, E., Hansen, Å.S., Rasmussen, S.K., Juodeikiene, G., Vogensen, F.K. (2015). Phytase-active lactic acid bacteria from sourdoughs: Isolation and identification. LWT-Food Science and Technology, 63(1), 766-772.
  • [44] Goswami, G., Bora, S.S., Parveen, A., Boro, R.C., Barooah, M. (2017). Identification and functional properties of dominant lactic acid bacteria isolated from Kahudi, a traditional rapeseed fermented food product of Assam, India. Journal of Ethnic Foods, 4(3), 187-197.
There are 44 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Hümeyra İspirli This is me 0000-0002-7601-0374

Enes Dertli This is me 0000-0002-0421-6103

Project Number 2017/02-69001-21
Publication Date October 11, 2022
Submission Date January 7, 2022
Published in Issue Year 2022

Cite

APA İspirli, H., & Dertli, E. (2022). Isolation of Distinct Lactobacillaceae spp. with Functional Characteristics from Traditional Sourdough Samples. Akademik Gıda, 20(3), 211-219. https://doi.org/10.24323/akademik-gida.1186584
AMA İspirli H, Dertli E. Isolation of Distinct Lactobacillaceae spp. with Functional Characteristics from Traditional Sourdough Samples. Akademik Gıda. October 2022;20(3):211-219. doi:10.24323/akademik-gida.1186584
Chicago İspirli, Hümeyra, and Enes Dertli. “Isolation of Distinct Lactobacillaceae Spp. With Functional Characteristics from Traditional Sourdough Samples”. Akademik Gıda 20, no. 3 (October 2022): 211-19. https://doi.org/10.24323/akademik-gida.1186584.
EndNote İspirli H, Dertli E (October 1, 2022) Isolation of Distinct Lactobacillaceae spp. with Functional Characteristics from Traditional Sourdough Samples. Akademik Gıda 20 3 211–219.
IEEE H. İspirli and E. Dertli, “Isolation of Distinct Lactobacillaceae spp. with Functional Characteristics from Traditional Sourdough Samples”, Akademik Gıda, vol. 20, no. 3, pp. 211–219, 2022, doi: 10.24323/akademik-gida.1186584.
ISNAD İspirli, Hümeyra - Dertli, Enes. “Isolation of Distinct Lactobacillaceae Spp. With Functional Characteristics from Traditional Sourdough Samples”. Akademik Gıda 20/3 (October 2022), 211-219. https://doi.org/10.24323/akademik-gida.1186584.
JAMA İspirli H, Dertli E. Isolation of Distinct Lactobacillaceae spp. with Functional Characteristics from Traditional Sourdough Samples. Akademik Gıda. 2022;20:211–219.
MLA İspirli, Hümeyra and Enes Dertli. “Isolation of Distinct Lactobacillaceae Spp. With Functional Characteristics from Traditional Sourdough Samples”. Akademik Gıda, vol. 20, no. 3, 2022, pp. 211-9, doi:10.24323/akademik-gida.1186584.
Vancouver İspirli H, Dertli E. Isolation of Distinct Lactobacillaceae spp. with Functional Characteristics from Traditional Sourdough Samples. Akademik Gıda. 2022;20(3):211-9.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).