Research Article
BibTex RIS Cite

Batı Akdeniz Bölgesi’nde Doğal Olarak Yetişen İğde (Elaeagnus angustifolia L.) Çeşitlerinin Antioksidan Aktivitesi, Fiziko-Kimyasal Özellikleri ve Yağ Asidi Kompozisyonu

Year 2022, , 329 - 335, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224295

Abstract

Elaeagnus angustifolia L., Elaeagnaceae (İğdegiller) familyasından meyveleri iştah açıcı olarak tüketilen bir bitkidir. Elaeagnus meyvesinin mezokarp dokusu ağırlıklı olarak karbonhidrat içerirken, endokarp (çekirdek) kısmı lipidler bakımından zengindir. Bu çalışmada, Batı Akdeniz Bölgesi’nde doğal olarak yetişen dört farklı Elaeagnus angustifolia çeşidinin endokarp dokularının yağ asidi kompozisyonu ve nitrojen içeriği ile bunların mezokarp ve ekzokarp dokularının toplam fenolik ve flavonoid içerikleri ile antioksidan aktiviteleri belirlenmiştir. Elaeagnus meyvelerinin endokarp dokularının ham yağ içeriği %24.45 ile 30.13 arasında değişmiş ve en yüksek azot içeriği (%0.205) Yerli çeşidinde bulunmuştur. Endokarp doku lipidlerindeki baskın yağ asidi linoleik asit olarak belirlenmiş (yaklaşık %48) ve bu dokudaki tekli ve çoklu doymamış yağ asitlerinin içeriğinin yaklaşık %90 olduğu tespit edilmiştir. Mezokarp ve ekzokarp dokularının toplam fenolik ve flavonoid içeriklerinde ve antioksidan aktivitelerinde çeşit farklılıklar belirlenmiştir. Şeker çeşidinin mezokarp dokuları en yüksek toplam fenolik içerik (161.9 mg GAE/100 g kuru madde (km)) ve antioksidan aktiviteye (118.3 µmol Trolox® eşdeğeri (TE) g km) sahipken, en yüksek toplam flavonoid içeriği (216.5 mg kateşin eşdeğeri (CE)/100 g km) Yerli çeşidi ekzokarp dokusunda tespit edilmiştir. Sonuçlar, endokarp doku lipitlerinin gıda, yem ve kozmetik endüstrisinde iyi bir çoklu doymamış yağ asitleri kaynağı olabileceğini göstermiştir.

References

  • [1] Dirr, M. (1990). Manual of Woody Landscape Plants: Their Identification, Ornamental Characteristics, Culture, Propagation and Uses, Stipes Publishing Company, Champaign, Illionis, USA, pp. 301-306.
  • [2] McKean, D.R. (1982). In Flora of Turkey and the East Aegean Islands, Vol. 7, (Ed. P. H. Davis), Edinburgh University Press, Edinburgh, pp. 533-534.
  • [3] Baytop, T. (1984). Curing by Plants in Turkey (Past and Present). Istanbul University Press, No. 3255, Faculty of Pharmacy, No. 40, Istanbul, pp. 260.
  • [4] Carman, J.G., Brotherson, J.D. (1982). Comparisons of sites infested and not infested with saltcedar (Tamarix pentandra) and Russian olive (Elaeagnus angustifolia). Weed Science, 30, 360-364.
  • [5] Kalyoncu, I.M., Ersoy, N., Yılmaz, M.A. (2008). Research on the effects of some hormone and relative humidity levels on rooting of softwood top cuttings of Russian olive (Elaeagnus angustifolia L.) determined by the selection of breeding. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 3(1), 9-18.
  • [6] Anonymous (2017). https://www.eyasamrehberi.com/photo/meyva_agaclari/igde.htm (accessed on 19.11.2017).
  • [7] Hays Jr., J.F. (1990). Wildlife considerations in windbreak renovation. In: Great Plains Agricultural Council, Compiler. Windbreaks: Living with the wind: Proceedings, Windbreak Renovation Workshop, pp. 23-25.
  • [8] Cansev, A., Sahan, Y., Celik, G., Taskesen, S., Ozbey, H. (2011). Chemical properties and antioxidant capacity of Elaeagnus angustifolia L. fruits. Asian Journal of Chemistry, 23(6), 2661-2665.
  • [9] Ercisli, S., Orhan, E. (2007). Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chemistry, 103, 1380-1384.
  • [10] Güler, N., Liman, B.C. (2005). The investigation of vitamin B12, folic acid and biotin content of different plant species by enzyme immuno assay. Sağlık Bilimleri Dergisi, 14(3), 184-190.
  • [11] Saboonchian, F., Jamei, R., Sarghein, S.H., (2014). Phenolic and flavonoid content of Elaeagnus angustifolia L. (leaf and flower). Avicenna Journal of Phytomedicine, 4, 231-238.
  • [12] Shariff, Z.U. (2001). Modern herbal therapy for common ailments, Spectrum Books Ltd., Ibadan, Nigeria in Association with Safari Books Ltd. Nature Pharmacy Series, UK, 1, 9-84,
  • [13] Akgül, M., Akça, M. (2014). Chemical analysis in Russian olive wood (Elaeagnus angustifolia L.) and barks. II. National Mediterranean Forest and Environment Symposium: The future of Mediterranean forests: Sustainable society and environment, Isparta, Turkey.
  • [14] Ge, Y., Liu, J., Su, D. (2009). In vivo evaluation of the anti-asthmatic, antitussive and expectorant activities of extract and fractions from Elaeagnus pungens leaf. Journal of Ethnopharmacology, 126, 538-542.
  • [15] Peterson, G.W. (1976). Disease of Russian olive caused by Botryodiplodia theobromae. Plant Disease Reporter, 60, 490-494.
  • [16] Gülcü, S., Çelik-Uysal, S. (2010). The effects of seedling density on morfological characteristics of oleaster (Elaeagnus angustifolia L.) seedlings. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, A(2), 74-81.
  • [17] Shaw, D.L. (1988). The design and use of living snow fences in North America. Agriculture, Ecosystems & Environment, 22(23), 351-362.
  • [18] Carrol, R.B., Morehart, A.L., Stuart, M. (1976). Phomopsis canker of Russian-olive in Delaware. Plant Disease Reporter, 60, 787-788.
  • [19] Krupinsky, J.M., Frank, A.B. (1986). Effects of water stress on Tubercularia canker of Russian olive. Great Plains Agriculture [i.e. Agricultural] Council Publication, 117, 171-172.
  • [20] Seçilmiş Canbay, H., Bardakçı, B. (2011). Determination of fatty acid, C, H, N and trace element composition in grape seed by GC/MS, FTIR, elemental analyzer and ICP/OES. SDU Journal of Science, 6, 140-148.
  • [21] Vernon, L.S., Orthofer, R., Lamuela-Raventos, R.M., (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178.
  • [22] Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555-559.
  • [23] Thaipong, K., Boonprakop, U., Crosby, K., Cisneros-Zevallos, L., Byrne, D.H. (2006). Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669-675.
  • [24] Akbolat, S., Ertekin, C., Menges, H.O., Guzel, E., Ekinci, K. (2008). Physical and nutritional properties of oleaster (Elaeagnus angustifolia L.) growing in Turkey. Asian Journal of Chemistry, 20(3), 2358-2366.
  • [25] Bartha, D. Csiszár, A. (2008). Russian Olive (Elaeagnus angustifolia L.). In: The most important invasive plants in Hungary, edited by Zoltán Botta-Dukát and Lajos Balogh, Institute of Ecology and Botany, Hungarian Academy of Sciences, Vácrátót, Hungary, pp. 85-93.
  • [26] Kadir, M., Kuerban-Jiang, B. (2011). Research on fat and protein compositions in seeds of wild Elaeagnus angustifolia from Xinjiang Uigur Autonomous Region. Medicinal Plants, 2, 51-53.
  • [27] Yıldırım, I., Gökçe, Z., Yılmaz, Ö. (2015). The investigation of biochemical content of Elaeagnus angustifolia. Journal of the Turkish Chemical Society, Section A: Chemistry, 2(1), 34-41.
  • [28] Gökbulut, İ. (2014). Volatile composition, antimicrobial and antioxidant properties of different parts from Elaeagnus angustifolia L. Journal of Essential Oil Bearing Plants, 17(6), 1187-1202.
  • [29] Hassanzadeh, Z. Hassanpour, H. (2018). Evaluation of physicochemical characteristics and antioxidant properties of Elaeagnus angustifolia L. Scientia Horticulturae, 238, 83-90.

Antioxidant Activity, Physico-Chemical and Fatty Acid Composition of Oleaster (Elaeagnus angustifolia L.) Varieties Naturally Grown in Western Mediterranean Region of Turkey

Year 2022, , 329 - 335, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224295

Abstract

Elaeagnus angustifolia L. belongs to the family of Elaeagnaceae, and its fruits are consumed as an appetizer. Mesocarp tissue of Elaeagnus fruits contains mainly carbohydrates while endocarp part (kernel) is rich in lipids. In this study, fatty acid profiles and nitrogen contents of the endocarp tissues of four different Elaeagnus angustifolia varieties naturally grown in the Western Mediterranean Region of Turkey were determined as well as the total phenolic and flavonoid contents and antioxidant activity of their mesocarp and exocarp tissues. The crude fat content of endocarp tissues of Elaeagnus fruits ranged from 24.45 to 30.13%, and the highest nitrogen content (0.205%) was in the Native variety. The dominant fatty acid in endocarp tissue lipids was linoleic acid (ca. 48%), and the content of mono- and polyunsaturated fatty acids in this tissue was about 90%. Varietal differences were found in the total phenolic and flavonoid contents and antioxidant activities of mesocarp and exocarp tissues. The mesocarp tissues of Sugar variety had the highest total phenolic content (161.9 mg GAE 100/g dry matter (dm)) and antioxidant activity (118.3 µmol Trolox® equivalent (TE) g dm) while the highest total flavonoid content (216.5 mg catechin equivalent (CE) 100 g dm) was in the exocarp tissue of Native variety. Results indicated that endocarp tissue lipids can be a good source of polyunsaturated fatty acids for human consumption in food, feed and cosmetics industries.

References

  • [1] Dirr, M. (1990). Manual of Woody Landscape Plants: Their Identification, Ornamental Characteristics, Culture, Propagation and Uses, Stipes Publishing Company, Champaign, Illionis, USA, pp. 301-306.
  • [2] McKean, D.R. (1982). In Flora of Turkey and the East Aegean Islands, Vol. 7, (Ed. P. H. Davis), Edinburgh University Press, Edinburgh, pp. 533-534.
  • [3] Baytop, T. (1984). Curing by Plants in Turkey (Past and Present). Istanbul University Press, No. 3255, Faculty of Pharmacy, No. 40, Istanbul, pp. 260.
  • [4] Carman, J.G., Brotherson, J.D. (1982). Comparisons of sites infested and not infested with saltcedar (Tamarix pentandra) and Russian olive (Elaeagnus angustifolia). Weed Science, 30, 360-364.
  • [5] Kalyoncu, I.M., Ersoy, N., Yılmaz, M.A. (2008). Research on the effects of some hormone and relative humidity levels on rooting of softwood top cuttings of Russian olive (Elaeagnus angustifolia L.) determined by the selection of breeding. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 3(1), 9-18.
  • [6] Anonymous (2017). https://www.eyasamrehberi.com/photo/meyva_agaclari/igde.htm (accessed on 19.11.2017).
  • [7] Hays Jr., J.F. (1990). Wildlife considerations in windbreak renovation. In: Great Plains Agricultural Council, Compiler. Windbreaks: Living with the wind: Proceedings, Windbreak Renovation Workshop, pp. 23-25.
  • [8] Cansev, A., Sahan, Y., Celik, G., Taskesen, S., Ozbey, H. (2011). Chemical properties and antioxidant capacity of Elaeagnus angustifolia L. fruits. Asian Journal of Chemistry, 23(6), 2661-2665.
  • [9] Ercisli, S., Orhan, E. (2007). Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chemistry, 103, 1380-1384.
  • [10] Güler, N., Liman, B.C. (2005). The investigation of vitamin B12, folic acid and biotin content of different plant species by enzyme immuno assay. Sağlık Bilimleri Dergisi, 14(3), 184-190.
  • [11] Saboonchian, F., Jamei, R., Sarghein, S.H., (2014). Phenolic and flavonoid content of Elaeagnus angustifolia L. (leaf and flower). Avicenna Journal of Phytomedicine, 4, 231-238.
  • [12] Shariff, Z.U. (2001). Modern herbal therapy for common ailments, Spectrum Books Ltd., Ibadan, Nigeria in Association with Safari Books Ltd. Nature Pharmacy Series, UK, 1, 9-84,
  • [13] Akgül, M., Akça, M. (2014). Chemical analysis in Russian olive wood (Elaeagnus angustifolia L.) and barks. II. National Mediterranean Forest and Environment Symposium: The future of Mediterranean forests: Sustainable society and environment, Isparta, Turkey.
  • [14] Ge, Y., Liu, J., Su, D. (2009). In vivo evaluation of the anti-asthmatic, antitussive and expectorant activities of extract and fractions from Elaeagnus pungens leaf. Journal of Ethnopharmacology, 126, 538-542.
  • [15] Peterson, G.W. (1976). Disease of Russian olive caused by Botryodiplodia theobromae. Plant Disease Reporter, 60, 490-494.
  • [16] Gülcü, S., Çelik-Uysal, S. (2010). The effects of seedling density on morfological characteristics of oleaster (Elaeagnus angustifolia L.) seedlings. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, A(2), 74-81.
  • [17] Shaw, D.L. (1988). The design and use of living snow fences in North America. Agriculture, Ecosystems & Environment, 22(23), 351-362.
  • [18] Carrol, R.B., Morehart, A.L., Stuart, M. (1976). Phomopsis canker of Russian-olive in Delaware. Plant Disease Reporter, 60, 787-788.
  • [19] Krupinsky, J.M., Frank, A.B. (1986). Effects of water stress on Tubercularia canker of Russian olive. Great Plains Agriculture [i.e. Agricultural] Council Publication, 117, 171-172.
  • [20] Seçilmiş Canbay, H., Bardakçı, B. (2011). Determination of fatty acid, C, H, N and trace element composition in grape seed by GC/MS, FTIR, elemental analyzer and ICP/OES. SDU Journal of Science, 6, 140-148.
  • [21] Vernon, L.S., Orthofer, R., Lamuela-Raventos, R.M., (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178.
  • [22] Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555-559.
  • [23] Thaipong, K., Boonprakop, U., Crosby, K., Cisneros-Zevallos, L., Byrne, D.H. (2006). Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669-675.
  • [24] Akbolat, S., Ertekin, C., Menges, H.O., Guzel, E., Ekinci, K. (2008). Physical and nutritional properties of oleaster (Elaeagnus angustifolia L.) growing in Turkey. Asian Journal of Chemistry, 20(3), 2358-2366.
  • [25] Bartha, D. Csiszár, A. (2008). Russian Olive (Elaeagnus angustifolia L.). In: The most important invasive plants in Hungary, edited by Zoltán Botta-Dukát and Lajos Balogh, Institute of Ecology and Botany, Hungarian Academy of Sciences, Vácrátót, Hungary, pp. 85-93.
  • [26] Kadir, M., Kuerban-Jiang, B. (2011). Research on fat and protein compositions in seeds of wild Elaeagnus angustifolia from Xinjiang Uigur Autonomous Region. Medicinal Plants, 2, 51-53.
  • [27] Yıldırım, I., Gökçe, Z., Yılmaz, Ö. (2015). The investigation of biochemical content of Elaeagnus angustifolia. Journal of the Turkish Chemical Society, Section A: Chemistry, 2(1), 34-41.
  • [28] Gökbulut, İ. (2014). Volatile composition, antimicrobial and antioxidant properties of different parts from Elaeagnus angustifolia L. Journal of Essential Oil Bearing Plants, 17(6), 1187-1202.
  • [29] Hassanzadeh, Z. Hassanpour, H. (2018). Evaluation of physicochemical characteristics and antioxidant properties of Elaeagnus angustifolia L. Scientia Horticulturae, 238, 83-90.
There are 29 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Rabia Fakı This is me 0000-0002-1756-7148

Hale Seçilmiş Canbay This is me 0000-0002-3783-8064

Oğuz Gürsoy This is me 0000-0002-5907-4595

Yusuf Yılmaz This is me 0000-0002-5061-0005

Publication Date December 27, 2022
Submission Date September 12, 2022
Published in Issue Year 2022

Cite

APA Fakı, R., Seçilmiş Canbay, H., Gürsoy, O., Yılmaz, Y. (2022). Antioxidant Activity, Physico-Chemical and Fatty Acid Composition of Oleaster (Elaeagnus angustifolia L.) Varieties Naturally Grown in Western Mediterranean Region of Turkey. Akademik Gıda, 20(4), 329-335. https://doi.org/10.24323/akademik-gida.1224295
AMA Fakı R, Seçilmiş Canbay H, Gürsoy O, Yılmaz Y. Antioxidant Activity, Physico-Chemical and Fatty Acid Composition of Oleaster (Elaeagnus angustifolia L.) Varieties Naturally Grown in Western Mediterranean Region of Turkey. Akademik Gıda. December 2022;20(4):329-335. doi:10.24323/akademik-gida.1224295
Chicago Fakı, Rabia, Hale Seçilmiş Canbay, Oğuz Gürsoy, and Yusuf Yılmaz. “Antioxidant Activity, Physico-Chemical and Fatty Acid Composition of Oleaster (Elaeagnus Angustifolia L.) Varieties Naturally Grown in Western Mediterranean Region of Turkey”. Akademik Gıda 20, no. 4 (December 2022): 329-35. https://doi.org/10.24323/akademik-gida.1224295.
EndNote Fakı R, Seçilmiş Canbay H, Gürsoy O, Yılmaz Y (December 1, 2022) Antioxidant Activity, Physico-Chemical and Fatty Acid Composition of Oleaster (Elaeagnus angustifolia L.) Varieties Naturally Grown in Western Mediterranean Region of Turkey. Akademik Gıda 20 4 329–335.
IEEE R. Fakı, H. Seçilmiş Canbay, O. Gürsoy, and Y. Yılmaz, “Antioxidant Activity, Physico-Chemical and Fatty Acid Composition of Oleaster (Elaeagnus angustifolia L.) Varieties Naturally Grown in Western Mediterranean Region of Turkey”, Akademik Gıda, vol. 20, no. 4, pp. 329–335, 2022, doi: 10.24323/akademik-gida.1224295.
ISNAD Fakı, Rabia et al. “Antioxidant Activity, Physico-Chemical and Fatty Acid Composition of Oleaster (Elaeagnus Angustifolia L.) Varieties Naturally Grown in Western Mediterranean Region of Turkey”. Akademik Gıda 20/4 (December 2022), 329-335. https://doi.org/10.24323/akademik-gida.1224295.
JAMA Fakı R, Seçilmiş Canbay H, Gürsoy O, Yılmaz Y. Antioxidant Activity, Physico-Chemical and Fatty Acid Composition of Oleaster (Elaeagnus angustifolia L.) Varieties Naturally Grown in Western Mediterranean Region of Turkey. Akademik Gıda. 2022;20:329–335.
MLA Fakı, Rabia et al. “Antioxidant Activity, Physico-Chemical and Fatty Acid Composition of Oleaster (Elaeagnus Angustifolia L.) Varieties Naturally Grown in Western Mediterranean Region of Turkey”. Akademik Gıda, vol. 20, no. 4, 2022, pp. 329-35, doi:10.24323/akademik-gida.1224295.
Vancouver Fakı R, Seçilmiş Canbay H, Gürsoy O, Yılmaz Y. Antioxidant Activity, Physico-Chemical and Fatty Acid Composition of Oleaster (Elaeagnus angustifolia L.) Varieties Naturally Grown in Western Mediterranean Region of Turkey. Akademik Gıda. 2022;20(4):329-35.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).