Research Article
BibTex RIS Cite

Hayvancılık İşletmesi ve Termal Kaynak Kökenli Toprak ve Su Örneklerinden Miksobakteri İzolasyonu ve İzolatların Antibakteriyel Aktivitesi

Year 2022, , 358 - 364, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224335

Abstract

Miksobakteriler pek çok antibakteriyel, antifungal, antikanser, antiparazit, immunosupresif, sitotoksik ve antioksidatif biyoaktif bileşiklerin önemli kaynağı kabul edilmektedir. Antibiyotiğe dirençli patojen bakterilerin neden olduğu hastalıkların artmasıyla birlikte, doğal kaynaklardan bu patojenlerin kontrol edilmesi/yok edilmesini sağlayacak daha etkili yeni antibiyotiklere ihtiyaç duyulmaktadır. Bu çalışmada farklı illerden (Antalya, Burdur, Isparta, İzmir, Eskişehir, Bursa, ve Denizli) toplanan 50 adet toprak (4 adet termal kaynak civarı) ve 6 adet su örneği (4 adet termal su) miksobakteri izolasyonu için kullanılmıştır. Toplam 50 miksobakteri izolatından 10 izolatın biyokimyasal tanı testleri kullanılarak 5 cinse (Myxococcus sp., Cystobacter sp., Stigmatella sp., Nannocytis sp. ve Polyangium sp.) ait olduğu belirlenmiştir. Miksobakteri izolatlarının antibakteriyel aktiviteleri kuyucuk difüzyon yöntemi kullanılarak Gram pozitif (Bacillus cereus ATTC 6051 ve Staphylococcus aureus ATTC 25923) ve Gram negatif (Escherichia coli ATTC 25922 ve Pseudomanas aeruginosa PA01) suşlar için incelenmiştir. MB23, MB33 ve MB34 miksobakteri izolatları S. aureus için (sırasıyla 22.0, 24.7 ve 19.3 mm) ve MB9, MB23, MB28, MB33 ve Sİ34 miksobakteri izolatları ise B. cereus için (sırasıyla 10.0, 18.5, 10.0, 28.0 ve 20.0 mm) antibakteriyel etki göstermiştir. Bu izolatların E. coli ve P. aeruginosa için antibakteriyel etkisi olmamıştır. Bu sonuçlara göre miksobakterilerin Gram pozitif patojen bakterilere antibakteriyel etki göstermesi önemlidir ve mevcut potansiyelin anlaşılabilmesi için üzerinde detaylı çalışma gerekmektedir.

Supporting Institution

Burdur Mehmet Akif Ersoy Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

0489-YL-17

Thanks

Bu çalışma Burdur Mehmet Akif Ersoy Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından 0489-YL-17 proje numarası ile desteklenmiştir. Kullanılan bakteri suşları Prof. Dr. Seyhan Ulusoy (Süleyman Demirel Üniversitesi, Fen Fakültesi, Biyoloji Bölümü, Isparta) tarafından sağlanmıştır.

References

  • [1] Ngo, L.T., Okogun, J.I., Folk, W.R., (2013). 21st century natural product research and drug development and traditional medicines. Natural Product Reports, 304, 584-592.
  • [2] Newman, D., J., Cragg., G., M., (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Product, 23, 311-335.
  • [3] Lewis K., (2013). Platforms for antibiotic discovery. Nature Reviews Drug Discovery, 12, 371-387.
  • [4] Pahalagedara, A.S.N.W., Flint, S., Palmer, J., Brightwell, G., Gupta, T.B. (2020). Antimicrobial production by strictly anaerobic Clostridium spp. International Journal of Antimicrobial Agents, 55(5), 105910.
  • [5] Imoto, N., Amanuma, F., Maruyama, H., Watanabe, S., Hashiguchi, N. (2019). Maternal antimicrobial use at delivery affects gut microbiota of infants into the early weaning period. European Journal of Pediatrics, 178(11), 1619-1619.
  • [6] Sun, Y., (2016). Biosynthetic analysis of marine myxobacterial secondary metabolites. Laboratory of Bioactive Natural Products Chemistry Department of Applied Molecular Biosciences Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
  • [7] Phillips, K.E., Akbar, S., Stevens, D.C. (2022). Concepts and conjectures concerning predatory performance of myxobacteria. Frontiers in Microbiology, 3883.
  • [8] Zhao, Y., Wang, Y., Xia, C., Li, X., Ye, X., Fan, Q., Cui, Z. (2021). Whole-genome sequencing of Corallococcus sp. strain EGB reveals the genetic determinants linking taxonomy and predatory behavior. Genes, 12, 1421.
  • [9] Yamamura, S., Amachi, S., (2014). Microbiology of inorganic arsenic: from metabolism to bioremediation. Journal of Bioscience and Bioengineering, 118, 1-9.
  • [10] Bader, C.D., Panter, F., Müller, R., (2021). In depth natural product discovery -Myxobacterial strains that provided multiple secondary metabolites. Biotechnology Advances, 39, 107480.
  • [11] Buchanan, R.E., Gibbons, N.E., (1974). Bergey’s Manual of Determinative Bacteriology. Washington. 404s.
  • [12] Dworkin, M., (1993). Cell Surfaces and Appendages. Myxobacteria II. (Dworkin, M., Kaiser, D-eds) American Society for Microbiology, Washington. 63-84.
  • [13] Holt, J. G., R. N. Krieg, H. S., Peter, J. T., Staley, T.S. Williams., (1994). Group 16 The Fruiting, Gliding Bacteria: The Myxobacteria. Bergey’s Manuel of Determinative Bacteriology. Ed. Williams and Wilkins Baltimore, Maryland USA 515-525.
  • [14] Mulwa, L.S., Stadler, M. (2018). Antiviral compounds from myxobacteria. Microorganisms, 6 73.
  • [15] Thiery, S., Kaimer, C. (2020). The predation strategy of Myxococcus xanthus. Frontiers in Microbiology, 11, 2.
  • [16] Dawid, W., (2000). Biology and global distribution of mxobacteria in soils. FEMS Microbiology Reviews. 24, 403-427.
  • [17] Schulz, E., Goes, A., Garcia, R., Panter, F., Koch, M., Müller, R., Fuhrmann, G. (2018). Biocompatible bacteria-derived vesicles show inherent antimicrobial activity. Journal of Controlled Release, 290, 46-55.
  • [18] Sanford, R.A., Cole, J.R., Tiedje, J.M, (2002). Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Applied and Environmental Microbiology, 68, 893-900.
  • [19] Reichenbach, H., (1993). Biology of the Myxobacteria: Ecology and Taxonomy. Myxobacteria II. (Dworkin, M., Kaiser, D.-eds) American Society for Microbiology, Washington. 13-63.
  • [20] Reichenbach, H., Höfle, G., (1989). The Gliding Bacteria: A Treasury of Secondary Metabolites. Bioactive Metabolites from Microorganisms. (M.E. Bushell, U. Grafe Elsevier-eds). Amsterdam. 27, 79-98.
  • [21] Mohr, K. I. (2018). Diversity of myxobacteria—we only see the tip of the iceberg. Microorganisms, 6(3), 84.
  • [22] Albataineh, H., Stevens, D.C. (2018). Marine myxobacteria: a few good halophiles. Marine Drugs, 16, 209.
  • [23] Fudou, R., Jojima, Y., Iizuka, T., Yamanaka, S. (2002). Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov.: Novel moderately halophilic myxobacteria isolated from coastal saline environments. The Journal of General and Applied Microbiology, 48, 109-116.
  • [24] Iizuka, T., Jojima, Y., Fudou, R., Hiraishi, A., Ahn, J.W., Yamanaka, S., (2003). Plesiocystis pacifica gen. nov., sp. nov., a marine myxobacterium that contains dihydrogenated menaquinone, isolated from the Pacific coasts of Japan. International Journal of Systematic and Evolutionary Microbiology, 53, 189-195.
  • [25] Iizuka, T., Jojima, Y., Fudou, R., Tokura, M., Hiraishi, A., Yamanaka, S., (2003). Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. Systematic and Applied Microbiology, 26, 189-196.
  • [26] Iizuka, T., Jojima, Y., Hayakawa, A., Fujii, T., Yamanaka, S., Fudou, R., (2013). Pseudenhygromyxa salsuginis gen. nov., sp. nov., a myxobacterium isolated from an estuarine marsh. International Journal of Systematic and Evolutionary Microbiology, 63, 1360-1369.
  • [27] Menne, B. (1998). Carbonatolyse und Biokonservierung als Mechanismen der Verkarstung und SpeHiogenese. Beitr. z. Hydrogeol. 49, Graz.
  • [28] Madigan, M.T., Martinko, J.M., Parker, J., (1997). Biology of Microorganisms. Prentice Hall International, Inc. New Jersey. 986s.
  • [29] Bader, C.D., Panter, F., Müller, R. (2020). In depth natural product discovery-Myxobacterial strains that provided multiple secondary metabolites. Biotechnology Advances, 39, 107480.
  • [30] Shrivastava, A. Sharma, R.K. (2021). Myxobacteria and their products: current trends and future perspectives in industrial applications. Folia Microbiologica, 66, 483-507.
  • [31] Özçelik, S. (1998). Genel Mikrobiyoloji Uygulama Klavuzu. Süleyman Demirel Üniversitesi Ziraat Fakültesi Yayınları, Isparta.
  • [32] Gonzalez, F., Fárez‐Vidal, M. E., Arias, J. M., Montoya, E. (1994). Partial purification and biochemical properties of acid and alkaline phosphatases from Myxococcus coralloides D. Journal of Applied Bacteriology, 77(5), 567-573.
  • [33] Aytar, M. Oryaşın, M., Başbülbül, G. Bozdoğan, B. (2019). Agar well difüzyon yönteminde standardizasyon çalışması. Bartın University International Journal of Natural and Applied Sciences, 2(2), 138-145.
  • [34] Garica, R. Müller, R., 2014. The Family Polyangiaceae. The Pokaryotes. ed. Rosenberg, E. 4. Edition, pp. 247-279.
  • [35] URL-5,2019. https://acikders.ankara.edu.tr/pluginfile.php/97%20hafta_Bakteriler_1.pdf, (Erişim Tarihi: 28.06.2019).
  • [36] Kumar, S., Yadav, A.K., Chambel, P., Kaur, R. (2017). Molecular and functional characterization of myxobacteria isolated from soil in India. 3 Biotechnology, 7, 1-9.
  • [37] Schaberle, T.F., Lohr, F., Schmitz, A., Konig, G.M., (2014). Antibiotics from myxobacteria. Natural Product Reports, 31, 953-997.
  • [38] Gaspari, F., Paitan, Y., Mainini, M., Losi, D., (2005). Myxobacteria isolated in Israel as potential source of new anti-infectives. Journal of Applied Microbiology, 98, 429-439.
  • [39] Livingstone, P.G., Morphew, R.M., Whitworth, D.E., (2017). Myxobacteria are able to prey broadly upon clinically-relevant pathogens, exhibiting a prey range which cannot be explained by phylogeny. Frontiers in Microbiology, 8, 1593.

Isolation and Antibacterial Activity of Myxobacteria in Soil and Water Samples from Livestock Farm and Thermal Source Origin

Year 2022, , 358 - 364, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224335

Abstract

Myxobacteria are considered as an important source of new antibacterial, antifungal, anticancer, antiparasitic, immunosuppressive, cytotoxic and antioxidative bioactive compounds. The importance of developing new antibiotics from natural sources is increasing because of an increase in diseases caused by antibiotic-resistant pathogens. In this study, 50 soil samples, four of which were from near thermal sources, and 6 water samples, four of which were from thermal sources, were collected from different provinces (Antalya, Burdur, Isparta, İzmir, Eskişehir, Bursa and Denizli, Turkey), and they were used for myxobacteria isolation. They belonged to five genus of myxobacteria; Myxococcus sp., Cystobacter sp., Stigmatella sp., Nannocytis sp., Polyangium sp. The antibacterial activities of myxobacteria isolates were investigated for Gram positive (Bacillus cereus ATTC 6051 and Staphylococcus aureus ATTC 25923) and Gram negative (Escherichia coli ATTC 25922 and Pseudomonas aeruginosa PA01) strains using the well diffusion method. myxobacteria isolates of MB23, MB33 andMB34 showed antibacterial effects against S. aureus (zone diameters of 22.0, 24.7 and 19.3 mm, respectively) and myxobacteria isolates of MB9,MB23, MB28, MB33,MB34 against B. cereus (zone diameters of 10.0, 18.5, 10.0, 28.0 and 20.0 mm, respectively) but they had no activity against E. coli and P. aeruginosa. According to these results, it is important that the antibacterial activity of myxobacteria affects Gram positive pathogenic bacteria and detailed studies are required to understand their potential.

Project Number

0489-YL-17

References

  • [1] Ngo, L.T., Okogun, J.I., Folk, W.R., (2013). 21st century natural product research and drug development and traditional medicines. Natural Product Reports, 304, 584-592.
  • [2] Newman, D., J., Cragg., G., M., (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Product, 23, 311-335.
  • [3] Lewis K., (2013). Platforms for antibiotic discovery. Nature Reviews Drug Discovery, 12, 371-387.
  • [4] Pahalagedara, A.S.N.W., Flint, S., Palmer, J., Brightwell, G., Gupta, T.B. (2020). Antimicrobial production by strictly anaerobic Clostridium spp. International Journal of Antimicrobial Agents, 55(5), 105910.
  • [5] Imoto, N., Amanuma, F., Maruyama, H., Watanabe, S., Hashiguchi, N. (2019). Maternal antimicrobial use at delivery affects gut microbiota of infants into the early weaning period. European Journal of Pediatrics, 178(11), 1619-1619.
  • [6] Sun, Y., (2016). Biosynthetic analysis of marine myxobacterial secondary metabolites. Laboratory of Bioactive Natural Products Chemistry Department of Applied Molecular Biosciences Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
  • [7] Phillips, K.E., Akbar, S., Stevens, D.C. (2022). Concepts and conjectures concerning predatory performance of myxobacteria. Frontiers in Microbiology, 3883.
  • [8] Zhao, Y., Wang, Y., Xia, C., Li, X., Ye, X., Fan, Q., Cui, Z. (2021). Whole-genome sequencing of Corallococcus sp. strain EGB reveals the genetic determinants linking taxonomy and predatory behavior. Genes, 12, 1421.
  • [9] Yamamura, S., Amachi, S., (2014). Microbiology of inorganic arsenic: from metabolism to bioremediation. Journal of Bioscience and Bioengineering, 118, 1-9.
  • [10] Bader, C.D., Panter, F., Müller, R., (2021). In depth natural product discovery -Myxobacterial strains that provided multiple secondary metabolites. Biotechnology Advances, 39, 107480.
  • [11] Buchanan, R.E., Gibbons, N.E., (1974). Bergey’s Manual of Determinative Bacteriology. Washington. 404s.
  • [12] Dworkin, M., (1993). Cell Surfaces and Appendages. Myxobacteria II. (Dworkin, M., Kaiser, D-eds) American Society for Microbiology, Washington. 63-84.
  • [13] Holt, J. G., R. N. Krieg, H. S., Peter, J. T., Staley, T.S. Williams., (1994). Group 16 The Fruiting, Gliding Bacteria: The Myxobacteria. Bergey’s Manuel of Determinative Bacteriology. Ed. Williams and Wilkins Baltimore, Maryland USA 515-525.
  • [14] Mulwa, L.S., Stadler, M. (2018). Antiviral compounds from myxobacteria. Microorganisms, 6 73.
  • [15] Thiery, S., Kaimer, C. (2020). The predation strategy of Myxococcus xanthus. Frontiers in Microbiology, 11, 2.
  • [16] Dawid, W., (2000). Biology and global distribution of mxobacteria in soils. FEMS Microbiology Reviews. 24, 403-427.
  • [17] Schulz, E., Goes, A., Garcia, R., Panter, F., Koch, M., Müller, R., Fuhrmann, G. (2018). Biocompatible bacteria-derived vesicles show inherent antimicrobial activity. Journal of Controlled Release, 290, 46-55.
  • [18] Sanford, R.A., Cole, J.R., Tiedje, J.M, (2002). Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Applied and Environmental Microbiology, 68, 893-900.
  • [19] Reichenbach, H., (1993). Biology of the Myxobacteria: Ecology and Taxonomy. Myxobacteria II. (Dworkin, M., Kaiser, D.-eds) American Society for Microbiology, Washington. 13-63.
  • [20] Reichenbach, H., Höfle, G., (1989). The Gliding Bacteria: A Treasury of Secondary Metabolites. Bioactive Metabolites from Microorganisms. (M.E. Bushell, U. Grafe Elsevier-eds). Amsterdam. 27, 79-98.
  • [21] Mohr, K. I. (2018). Diversity of myxobacteria—we only see the tip of the iceberg. Microorganisms, 6(3), 84.
  • [22] Albataineh, H., Stevens, D.C. (2018). Marine myxobacteria: a few good halophiles. Marine Drugs, 16, 209.
  • [23] Fudou, R., Jojima, Y., Iizuka, T., Yamanaka, S. (2002). Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov.: Novel moderately halophilic myxobacteria isolated from coastal saline environments. The Journal of General and Applied Microbiology, 48, 109-116.
  • [24] Iizuka, T., Jojima, Y., Fudou, R., Hiraishi, A., Ahn, J.W., Yamanaka, S., (2003). Plesiocystis pacifica gen. nov., sp. nov., a marine myxobacterium that contains dihydrogenated menaquinone, isolated from the Pacific coasts of Japan. International Journal of Systematic and Evolutionary Microbiology, 53, 189-195.
  • [25] Iizuka, T., Jojima, Y., Fudou, R., Tokura, M., Hiraishi, A., Yamanaka, S., (2003). Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. Systematic and Applied Microbiology, 26, 189-196.
  • [26] Iizuka, T., Jojima, Y., Hayakawa, A., Fujii, T., Yamanaka, S., Fudou, R., (2013). Pseudenhygromyxa salsuginis gen. nov., sp. nov., a myxobacterium isolated from an estuarine marsh. International Journal of Systematic and Evolutionary Microbiology, 63, 1360-1369.
  • [27] Menne, B. (1998). Carbonatolyse und Biokonservierung als Mechanismen der Verkarstung und SpeHiogenese. Beitr. z. Hydrogeol. 49, Graz.
  • [28] Madigan, M.T., Martinko, J.M., Parker, J., (1997). Biology of Microorganisms. Prentice Hall International, Inc. New Jersey. 986s.
  • [29] Bader, C.D., Panter, F., Müller, R. (2020). In depth natural product discovery-Myxobacterial strains that provided multiple secondary metabolites. Biotechnology Advances, 39, 107480.
  • [30] Shrivastava, A. Sharma, R.K. (2021). Myxobacteria and their products: current trends and future perspectives in industrial applications. Folia Microbiologica, 66, 483-507.
  • [31] Özçelik, S. (1998). Genel Mikrobiyoloji Uygulama Klavuzu. Süleyman Demirel Üniversitesi Ziraat Fakültesi Yayınları, Isparta.
  • [32] Gonzalez, F., Fárez‐Vidal, M. E., Arias, J. M., Montoya, E. (1994). Partial purification and biochemical properties of acid and alkaline phosphatases from Myxococcus coralloides D. Journal of Applied Bacteriology, 77(5), 567-573.
  • [33] Aytar, M. Oryaşın, M., Başbülbül, G. Bozdoğan, B. (2019). Agar well difüzyon yönteminde standardizasyon çalışması. Bartın University International Journal of Natural and Applied Sciences, 2(2), 138-145.
  • [34] Garica, R. Müller, R., 2014. The Family Polyangiaceae. The Pokaryotes. ed. Rosenberg, E. 4. Edition, pp. 247-279.
  • [35] URL-5,2019. https://acikders.ankara.edu.tr/pluginfile.php/97%20hafta_Bakteriler_1.pdf, (Erişim Tarihi: 28.06.2019).
  • [36] Kumar, S., Yadav, A.K., Chambel, P., Kaur, R. (2017). Molecular and functional characterization of myxobacteria isolated from soil in India. 3 Biotechnology, 7, 1-9.
  • [37] Schaberle, T.F., Lohr, F., Schmitz, A., Konig, G.M., (2014). Antibiotics from myxobacteria. Natural Product Reports, 31, 953-997.
  • [38] Gaspari, F., Paitan, Y., Mainini, M., Losi, D., (2005). Myxobacteria isolated in Israel as potential source of new anti-infectives. Journal of Applied Microbiology, 98, 429-439.
  • [39] Livingstone, P.G., Morphew, R.M., Whitworth, D.E., (2017). Myxobacteria are able to prey broadly upon clinically-relevant pathogens, exhibiting a prey range which cannot be explained by phylogeny. Frontiers in Microbiology, 8, 1593.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Papers
Authors

Neşecan Duman This is me 0000-0002-1675-0469

Melike Baran Ekinci This is me 0000-0001-7314-9189

Arzu Kart This is me 0000-0002-2189-0052

Project Number 0489-YL-17
Publication Date December 27, 2022
Submission Date August 1, 2022
Published in Issue Year 2022

Cite

APA Duman, N., Baran Ekinci, M., & Kart, A. (2022). Hayvancılık İşletmesi ve Termal Kaynak Kökenli Toprak ve Su Örneklerinden Miksobakteri İzolasyonu ve İzolatların Antibakteriyel Aktivitesi. Akademik Gıda, 20(4), 358-364. https://doi.org/10.24323/akademik-gida.1224335
AMA Duman N, Baran Ekinci M, Kart A. Hayvancılık İşletmesi ve Termal Kaynak Kökenli Toprak ve Su Örneklerinden Miksobakteri İzolasyonu ve İzolatların Antibakteriyel Aktivitesi. Akademik Gıda. December 2022;20(4):358-364. doi:10.24323/akademik-gida.1224335
Chicago Duman, Neşecan, Melike Baran Ekinci, and Arzu Kart. “Hayvancılık İşletmesi Ve Termal Kaynak Kökenli Toprak Ve Su Örneklerinden Miksobakteri İzolasyonu Ve İzolatların Antibakteriyel Aktivitesi”. Akademik Gıda 20, no. 4 (December 2022): 358-64. https://doi.org/10.24323/akademik-gida.1224335.
EndNote Duman N, Baran Ekinci M, Kart A (December 1, 2022) Hayvancılık İşletmesi ve Termal Kaynak Kökenli Toprak ve Su Örneklerinden Miksobakteri İzolasyonu ve İzolatların Antibakteriyel Aktivitesi. Akademik Gıda 20 4 358–364.
IEEE N. Duman, M. Baran Ekinci, and A. Kart, “Hayvancılık İşletmesi ve Termal Kaynak Kökenli Toprak ve Su Örneklerinden Miksobakteri İzolasyonu ve İzolatların Antibakteriyel Aktivitesi”, Akademik Gıda, vol. 20, no. 4, pp. 358–364, 2022, doi: 10.24323/akademik-gida.1224335.
ISNAD Duman, Neşecan et al. “Hayvancılık İşletmesi Ve Termal Kaynak Kökenli Toprak Ve Su Örneklerinden Miksobakteri İzolasyonu Ve İzolatların Antibakteriyel Aktivitesi”. Akademik Gıda 20/4 (December 2022), 358-364. https://doi.org/10.24323/akademik-gida.1224335.
JAMA Duman N, Baran Ekinci M, Kart A. Hayvancılık İşletmesi ve Termal Kaynak Kökenli Toprak ve Su Örneklerinden Miksobakteri İzolasyonu ve İzolatların Antibakteriyel Aktivitesi. Akademik Gıda. 2022;20:358–364.
MLA Duman, Neşecan et al. “Hayvancılık İşletmesi Ve Termal Kaynak Kökenli Toprak Ve Su Örneklerinden Miksobakteri İzolasyonu Ve İzolatların Antibakteriyel Aktivitesi”. Akademik Gıda, vol. 20, no. 4, 2022, pp. 358-64, doi:10.24323/akademik-gida.1224335.
Vancouver Duman N, Baran Ekinci M, Kart A. Hayvancılık İşletmesi ve Termal Kaynak Kökenli Toprak ve Su Örneklerinden Miksobakteri İzolasyonu ve İzolatların Antibakteriyel Aktivitesi. Akademik Gıda. 2022;20(4):358-64.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).