Research Article
BibTex RIS Cite

Nişasta Bazlı Köpük Tabakların Hidrofobik Malzemelerle Kaplanması

Year 2022, , 365 - 373, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224341

Abstract

Hafif ve ucuz olması nedeniyle genleştirilmiş polistiren (EPS) tabaklar gıdaların ambalajlanması ve servisinde yaygın olarak kullanılmaktadır. Fakat çevre üzerindeki olumsuz etkilerinden dolayı dünyanın pek çok yerinde kullanımı yasaklanmaya veya kısıtlanmaya başlanmıştır. Son yıllarda biyobozunur köpük tabak üretimi üzerine pek çok çalışma yapılmaktadır. Nişasta bazlı köpük tabaklar biyobozunur olması ve yeterince mekanik dirence sahip olması açısından büyük umut vadetse de suya karşı yeterince direnç gösterememesi, ticari olarak kullanımının yaygınlaşmasındaki en önemli engeldir. Bu çalışmada buğday nişastası, buğday-patates nişastası karışımı glioksal ile çapraz bağlandıktan sonra nişastanın %7’si kadar buğday lifi eklenerek köpük tabaklar üretilmiştir. Köpük tabaklar polilaktik asit (PLA), polikaprolakton (PKL) ve polimetil metakrilat (PMMA) çözeltileri kullanılarak kaplanmıştır. Taramalı elektron mikroskobu görüntüleri, kaplama malzemelerinin köpük tabakların yüzeyinde 30-40 µm kalınlığında bir katman oluşturduğunu ve tabak yüzeyini daha pürüzsüz bir hale getirdiğini göstermiştir. Buğday-patates nişastasından üretilen köpük tabakların ortalama yoğunluğu 0.120±0.01 g/cm3 olup buğday nişastasından üretilen tabaklarınkinden (0.157±0.02 g/cm3) daha düşük olduğu bulunmuştur. PKL ve PLA ile buğday nişastasından, PLA ve PMMA ile buğday-patates nişastasında üretilen tabakların kaplanması, tabakların yoğunluğunu değiştirmemiştir. PLA ve PMMA ile kaplanan köpük tabakların kontrole göre sırasıyla 12 ve 18 kat daha az su emdiği bulunmuştur. PMMA ile kaplanan, buğday-patates nişastasından üretilen tabakların 300 dakika sonra sadece %2.3 oranında su emmesi özellikle su içeriği yüksek gıdaların ambalajlanması için uygun olduğunu göstermiştir. Simüle toprak altında PKL ile kaplanan tabaklar 42. günde, PLA ile kaplananlar 84. günde parçalanarak toprağa karıştığı bulunmuştur. PMMA ile kaplan tabakların 84. günde başlangıçtaki tabak ağırlığının %12.2’sinin parçalanmadan kaldığı tespit edilmiştir.

Supporting Institution

Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi

Project Number

FYL-2019-4868

Thanks

Bu çalışma Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi tarafından FYL-2019-4868 nolu proje ile desteklenmiştir.

References

  • [1] Baker, I. (2018). Polystyrene. In Fifty Materials That Make the World, Edited by Ashby F. Cham: Springer International Publishing, 111-115.
  • [2] Franz, R., Welle, F. (2003). Recycling packaging materials. In Novel Food Packaging Techniques, Edited by Ahvenainen R. Elsevier, 497-518.
  • [3] Dauvergne, P. (2018). Why is the global governance of plastic failing the oceans? Global Environmental Change, 51, 22-31.
  • [4] Shey, J., Imam, S.H., Glenn G.M., Orts W.J. (2006). Properties of baked starch foam with natural rubber latex. Industrial Crops and Products, 24(1), 34-40.
  • [5] Salgado, P.R., Schmidt, V.C, Molina, O.S.E., Mauri, A.N., Laurindo, J.B. (2008). Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. Journal of Food Engineering, 85(3), 435-443.
  • [6] Uslu, M.K., Polat, S. (2012). Effects of glyoxal cross-linking on baked starch foam. Carbohydrate Polymers, 87(3), 1994-1999.
  • [7] Willett, J.L., Shogren, R. L. (2002). Processing and properties of extruded starch/polymer foams. Polymer, 43(22), 5935-5947.
  • [8] Aygün, A., Uslu, M.K., Polat, S. (2017). Effects of starch sources and supplementary materials on starch based foam trays. Journal of Polymers and the Environment, 25(4), 1163-1174.
  • [9] Soykeabkaew, N., Supaphol, P., Rujiravanit, R. (2004). Preparation and characterization of jute-and flax-reinforced starch-based composite foams. Carbohydrate Polymers, 58(1), 53-63.
  • [10] Kaisangsri, N., Kerdchoechuen, O., Laohakunjit, N. (2012). Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Industrial Crops and Products, 37(1), 542-546.
  • [11] Kaisangsri, N., Kerdchoechuen, O., Laohakunjit, N. (2014). Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydrate Polymers, 110, 70-77.
  • [12] Tawakkal, I.S.M.A., Cran, M.J., Miltz, J., Bigger S.W. (2014). A review of poly(lactic acid)-based materials for antimicrobial packaging. Journal of Food Science, 79, 8.
  • [13] Bergel, B.F., Luz, L.M., Santana, R.M.C. (2018). Effect of poly(lactic acid) coating on mechanical and physical properties of thermoplastic starch foams from potato starch. Progress in Organic Coatings, 118, 91-96.
  • [14] Chang, Q., Hao, Y., Cheng, L., Liu, Y., Qu A. (2020) Preparation and performance evaluation of biodegradable corn starch film using poly (lactic acid) as waterproof coating. Surface Engineering, 36(6), 665-670.
  • [15] Spada, J.C., Seibert, S.F., Tessaro, I.C. (2021). Impact of PLA Poly(Lactic Acid) and PBAT Poly(butylene adipate-co-terephthalate) coating on the properties of composites with high content of rice husk. Journal of Polymers and the Environment, 29, 1324-1331.
  • [16] Preechawong, D., Peesan, M., Supaphol, P., Rujiravanit, R. (2004). Characterization of starch/poly(ε-caprolactone) hybrid foams. Polymer Testing, 23(6), 651-657.
  • [17] Ali, U., Karim, K.J.B.A., Buang, N.A. (2015). A review of the properties and applications of poly (methyl methacrylate) (PMMA), Polymer Reviews, 55(4), 678-705.
  • [18] Ji, M, Li, F., Li, J., Li, J., Zhang, C., Sun, K., Guo, Z. (2021) Enhanced mechanical properties, water resistance, thermal stability, and biodegradation of the starch-sisal fibre composites with various fillers. Materials & Design, 198, 109373.
  • [19] Chaireh,S., Ngasatool, P., Kaewtatip, K. (2020) Novel composite foam made from starch and water hyacinth with beeswax coating for food packaging applications, International Journal of Biological Macromolecules, 165, 1382-1391.
  • [20] Polat, S., Uslu, M.K., Aygün, A., Certel, M. (2013). The effects of the addition of corn husk fibre, kaolin and beeswax on cross-linked corn starch foam. Journal of Food Engineering, 116(2), 267–276.
  • [21] Shogren, R.L., Lawton, J.W., Tiefenbacher, K.F. (2002). Baked starch foams: Starch modifications and additives improve process parameters, structure and properties. Industrial Crops and Products, 16(1), 69-79.
  • [22] Rosa, D.S., Bardi, M.A.G., Guedes, C.G.F., Angelis, A.D. (2009). Role of polyethylene-graft-glycidyl methacrylate compatibilizer on the biodegradation of poly(ε-caprolactone)/cellulose acetate blends. Polymer Advanced Technologies, 20(12), 863-870.
  • [23] Glenn, G., Orts, W., Nobes, G.A. (2001). Starch, fiber and CaCO3 effects on the physical properties of foams made by a baking process. Industrial Crops and Products, 14(3), 201-212.

Coating Starch-Based Foam Trays with Hydrophobic Materials

Year 2022, , 365 - 373, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224341

Abstract

Expanded polystyrene (EPS) trays are widely used for food packaging and serving because they are light and inexpensive. However, their use has been banned or restricted in many parts of the world due to its negative effects on the environment. In recent years, many studies have been carried out on the production of biodegradable foam trays. Although starch-based foam trays are promising in terms of being biodegradable and having sufficient mechanical resistance, the most important obstacle in their commercial use is that they are not sufficiently resistant to water. In this study, foam trays were produced by adding wheat fiber at a ratio of 7% of starch after wheat starch or mixture of wheat-potato starch was cross-linked with glyoxal. Foam trays were coated by using solutions of polylactic acid (PLA), polycaprolactone (PKL), and polymethyl methacrylate (PMMA). Scanning electron microscope images showed that coating materials formed a 30-40 µm thick layer on the surface of foam trays and making the surface of trays smoother. The average density of foam trays produced from wheat potato starch was 0.120±0.01 g/cm3, which was lower than that of trays produced from wheat starch (0.157±0.02 g/cm3). The coating of trays produced from wheat starch with PKL and PLA, and wheat-potato starch with PLA and PMMA did not change the density of trays. Foam trays coated with PLA and PMMA absorbed 12 and 18 times less water than control trays, respectively. The trays made of wheat-potato starch coated with PMMA absorbed only 2.3% of water after 300 minutes, showing that they could be particularly suitable for packaging foods with a high water content. Trays coated with PCL under simulated soil were found to break down on the day 42, and those coated with PLA on the day 84. It was determined that 12.2% of the initial tray weight of trays coated with PMMA remained intact on the 84th day.

Project Number

FYL-2019-4868

References

  • [1] Baker, I. (2018). Polystyrene. In Fifty Materials That Make the World, Edited by Ashby F. Cham: Springer International Publishing, 111-115.
  • [2] Franz, R., Welle, F. (2003). Recycling packaging materials. In Novel Food Packaging Techniques, Edited by Ahvenainen R. Elsevier, 497-518.
  • [3] Dauvergne, P. (2018). Why is the global governance of plastic failing the oceans? Global Environmental Change, 51, 22-31.
  • [4] Shey, J., Imam, S.H., Glenn G.M., Orts W.J. (2006). Properties of baked starch foam with natural rubber latex. Industrial Crops and Products, 24(1), 34-40.
  • [5] Salgado, P.R., Schmidt, V.C, Molina, O.S.E., Mauri, A.N., Laurindo, J.B. (2008). Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. Journal of Food Engineering, 85(3), 435-443.
  • [6] Uslu, M.K., Polat, S. (2012). Effects of glyoxal cross-linking on baked starch foam. Carbohydrate Polymers, 87(3), 1994-1999.
  • [7] Willett, J.L., Shogren, R. L. (2002). Processing and properties of extruded starch/polymer foams. Polymer, 43(22), 5935-5947.
  • [8] Aygün, A., Uslu, M.K., Polat, S. (2017). Effects of starch sources and supplementary materials on starch based foam trays. Journal of Polymers and the Environment, 25(4), 1163-1174.
  • [9] Soykeabkaew, N., Supaphol, P., Rujiravanit, R. (2004). Preparation and characterization of jute-and flax-reinforced starch-based composite foams. Carbohydrate Polymers, 58(1), 53-63.
  • [10] Kaisangsri, N., Kerdchoechuen, O., Laohakunjit, N. (2012). Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Industrial Crops and Products, 37(1), 542-546.
  • [11] Kaisangsri, N., Kerdchoechuen, O., Laohakunjit, N. (2014). Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydrate Polymers, 110, 70-77.
  • [12] Tawakkal, I.S.M.A., Cran, M.J., Miltz, J., Bigger S.W. (2014). A review of poly(lactic acid)-based materials for antimicrobial packaging. Journal of Food Science, 79, 8.
  • [13] Bergel, B.F., Luz, L.M., Santana, R.M.C. (2018). Effect of poly(lactic acid) coating on mechanical and physical properties of thermoplastic starch foams from potato starch. Progress in Organic Coatings, 118, 91-96.
  • [14] Chang, Q., Hao, Y., Cheng, L., Liu, Y., Qu A. (2020) Preparation and performance evaluation of biodegradable corn starch film using poly (lactic acid) as waterproof coating. Surface Engineering, 36(6), 665-670.
  • [15] Spada, J.C., Seibert, S.F., Tessaro, I.C. (2021). Impact of PLA Poly(Lactic Acid) and PBAT Poly(butylene adipate-co-terephthalate) coating on the properties of composites with high content of rice husk. Journal of Polymers and the Environment, 29, 1324-1331.
  • [16] Preechawong, D., Peesan, M., Supaphol, P., Rujiravanit, R. (2004). Characterization of starch/poly(ε-caprolactone) hybrid foams. Polymer Testing, 23(6), 651-657.
  • [17] Ali, U., Karim, K.J.B.A., Buang, N.A. (2015). A review of the properties and applications of poly (methyl methacrylate) (PMMA), Polymer Reviews, 55(4), 678-705.
  • [18] Ji, M, Li, F., Li, J., Li, J., Zhang, C., Sun, K., Guo, Z. (2021) Enhanced mechanical properties, water resistance, thermal stability, and biodegradation of the starch-sisal fibre composites with various fillers. Materials & Design, 198, 109373.
  • [19] Chaireh,S., Ngasatool, P., Kaewtatip, K. (2020) Novel composite foam made from starch and water hyacinth with beeswax coating for food packaging applications, International Journal of Biological Macromolecules, 165, 1382-1391.
  • [20] Polat, S., Uslu, M.K., Aygün, A., Certel, M. (2013). The effects of the addition of corn husk fibre, kaolin and beeswax on cross-linked corn starch foam. Journal of Food Engineering, 116(2), 267–276.
  • [21] Shogren, R.L., Lawton, J.W., Tiefenbacher, K.F. (2002). Baked starch foams: Starch modifications and additives improve process parameters, structure and properties. Industrial Crops and Products, 16(1), 69-79.
  • [22] Rosa, D.S., Bardi, M.A.G., Guedes, C.G.F., Angelis, A.D. (2009). Role of polyethylene-graft-glycidyl methacrylate compatibilizer on the biodegradation of poly(ε-caprolactone)/cellulose acetate blends. Polymer Advanced Technologies, 20(12), 863-870.
  • [23] Glenn, G., Orts, W., Nobes, G.A. (2001). Starch, fiber and CaCO3 effects on the physical properties of foams made by a baking process. Industrial Crops and Products, 14(3), 201-212.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Papers
Authors

Yunus Emre Kısaç This is me 0000-0002-8132-8803

Mustafa Kemal Uslu This is me 0000-0002-8087-5143

Project Number FYL-2019-4868
Publication Date December 27, 2022
Submission Date June 20, 2022
Published in Issue Year 2022

Cite

APA Kısaç, Y. E., & Uslu, M. K. (2022). Nişasta Bazlı Köpük Tabakların Hidrofobik Malzemelerle Kaplanması. Akademik Gıda, 20(4), 365-373. https://doi.org/10.24323/akademik-gida.1224341
AMA Kısaç YE, Uslu MK. Nişasta Bazlı Köpük Tabakların Hidrofobik Malzemelerle Kaplanması. Akademik Gıda. December 2022;20(4):365-373. doi:10.24323/akademik-gida.1224341
Chicago Kısaç, Yunus Emre, and Mustafa Kemal Uslu. “Nişasta Bazlı Köpük Tabakların Hidrofobik Malzemelerle Kaplanması”. Akademik Gıda 20, no. 4 (December 2022): 365-73. https://doi.org/10.24323/akademik-gida.1224341.
EndNote Kısaç YE, Uslu MK (December 1, 2022) Nişasta Bazlı Köpük Tabakların Hidrofobik Malzemelerle Kaplanması. Akademik Gıda 20 4 365–373.
IEEE Y. E. Kısaç and M. K. Uslu, “Nişasta Bazlı Köpük Tabakların Hidrofobik Malzemelerle Kaplanması”, Akademik Gıda, vol. 20, no. 4, pp. 365–373, 2022, doi: 10.24323/akademik-gida.1224341.
ISNAD Kısaç, Yunus Emre - Uslu, Mustafa Kemal. “Nişasta Bazlı Köpük Tabakların Hidrofobik Malzemelerle Kaplanması”. Akademik Gıda 20/4 (December 2022), 365-373. https://doi.org/10.24323/akademik-gida.1224341.
JAMA Kısaç YE, Uslu MK. Nişasta Bazlı Köpük Tabakların Hidrofobik Malzemelerle Kaplanması. Akademik Gıda. 2022;20:365–373.
MLA Kısaç, Yunus Emre and Mustafa Kemal Uslu. “Nişasta Bazlı Köpük Tabakların Hidrofobik Malzemelerle Kaplanması”. Akademik Gıda, vol. 20, no. 4, 2022, pp. 365-73, doi:10.24323/akademik-gida.1224341.
Vancouver Kısaç YE, Uslu MK. Nişasta Bazlı Köpük Tabakların Hidrofobik Malzemelerle Kaplanması. Akademik Gıda. 2022;20(4):365-73.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).