Review
BibTex RIS Cite

Siyah Sarımsak (Allium sativum) Üretimi: Üretim Sırasında Gerçekleşen Fiziksel ve Kimyasal Değişimler

Year 2022, , 404 - 411, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224358

Abstract

Siyah sarımsak 45-90°C sıcaklık, %50-90 bağıl nemdeki kontrollü ortamlarda beyaz sarımsağın siyah renk alana kadar bekletilmesi ile üretilir. Üretim sırasında, Maillard ve enzimatik reaksiyonların gerçekleşmesiyle sarımsağın özellikle renk, pH değeri, kuru madde, indirgen şeker içeriği gibi fizikokimyasal özelliklerinde ve besin değerinde önemli değişimler oluşmaktadır. Antioksidan aktivitesinin beyaz sarımsağa kıyasla artması bu ürünü sağlık açısından daha tercih edilir kılmaktadır. Siyah sarımsak üretilmesi için gerekli sürenin 30-90 gün olması yüksek oranda enerji ve zaman kaybına neden olmaktadır. Bu derleme kapsamında, siyah sarımsak üretimi sırasında gerçekleşen fizikokimyasal değişimler, üretim teknolojisi ve üretim verimliliğini artırmak için kullanılan uygulamalar üzerine yapılmış bilimsel araştırmalar özetlenmiştir.

References

  • [1] Akan, S. (2014). Sarımsak (Allium sativum L.) tüketiminin insan sağlığına yararları. Akademik Gıda, 12(2), 95-100.
  • [2] Oosthuizen, C.B., Reid, A.M., Lall, N. (2018). Garlic (Allium sativum) and its associated molecules, as medicine. In Medicinal Plants for Holistic Health and Well-Being. Edited by N.Lall, Academic Press, 277-285p.
  • [3] TUİK, (2022). Bitkisel Üretim İstatistikleri, 2021, https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249 Adresinden Elde Edildi.
  • [4] Colín-González, A.L., Santana, R.A., Silva-Islas, C.A., Chánez-Cárdenas, M.E., Santamaría, A., Maldonado, P.D. (2012). The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxidative Medicine and Cellular Longevity, 1, 1-16.
  • [5] Czompa, A., Szoke, K., Prokisch, J., Gyongyosi, A., Bak, I., Balla, G., Tosaki, A., Lekli, I. (2018). Aged (black) versus raw garlic against ischemia/reperfusion-induced cardiac complications. International Journal of Molecular Sciences, 19(4), 1-14.
  • [6] Kimura, S., Tung, Y.C., Pan, M.H., Su, N.W., Lai, Y.J., Cheng, K.C. (2017). Black garlic: A critical review of its production, bioactivity, and application. Journal of Food and Drug Analysis, 25(1), 62-70.
  • [7] Bae, S.E., Cho, S.Y., Won, Y.D., Lee, S.H., Park, H.J. (2014). Changes in S-allyl cysteine contents and physicochemical properties of black garlic during heat treatment. LWT - Food Science and Technology, 55(1), 397-402.
  • [8] Medina, M.Á.T., Pérez-Aparicio, J., Moreno-Ortega, A., Moreno-Rojas, R. (2019). Influence of variety and storage time of fresh garlic on the physicochemical and antioxidant properties of black garlic. Foods, 8(8), 314-324.
  • [9] Jung, Y.M., Lee, S.H., Lee, D.S., You, M.J., Chung, I.K., Cheon, W.H., Kwon, Y.S., Lee, Y.J., Ku, S.K. (2011). Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects. Nutrition Research, 31(5), 387-396.
  • [10] Wang, D., Feng, Y., Liu, J., Yan, J., Wang, M., Changlong, J.S. (2010). Black garlic (Allium sativum) extracts enhance the immune system, Medicinal and Aromatic Plant Science and Biotechnology, 4(1), 37-40. [11] Kim, D.G., Kang, M.J., Hong, S.S., Choi, Y.H., Shin, J.H. (2017). Antiinflammatory effects of functionally active compounds isolated from aged black garlic. Phytotherapy Research, 31(1), 53-61.
  • [12] Liu, J., Zhang, G., Cong, X., Wen, C. (2018). Black garlic improves heart function in patients with coronary heart disease by improving circulating antioxidant levels. Frontiers in Physiology, 9, 1-11.
  • [13] Kim, J.H., Yu, S.H., Cho, Y.J., Pan, J.H., Cho, H.T., Kim, J.H., Bong, H., Lee, Y., Chang, M.H., Jeong, Y.J., Choi, G., Kim, Y.J. (2017). Preparation of S-Allylcysteine-enriched black garlic juice and its antidiabetic effects in streptozotocin-induced insulin-deficient mice. Journal of Agricultural and Food Chemistry, 65(2), 358-363.
  • [14] Medina, M.Á.T., Merinas-Amo, T., Fernández-Bedmar, Z., Font, R., Río-Celestino, M., Pérez-Aparicio, J., Moreno-Ortega, A., Alonso-Moraga, Á., Moreno-Rojas, R. (2019). Physicochemical characterization and biological in vitro assays. Foods, 8(220), 1-18.
  • [15] Canbolat, E. (2017). Sarımsağın besinsel yönden ve sağlık açısından değerlendirilmesi. Uluslararası Taşköprü Pompeiopolis Bilim Kültür Sanat Araştırmaları Sempozyumu, Nisan 10-12, 2017, Kastamonu, Türkiye, 935-949p.
  • [16] Kang, O.J. (2016). Physicochemical characteristics of black garlic after different thermal processing steps. Preventive Nutrition and Food Science, 21(4), 348-354.
  • [17] Rana, S.V., Pal, R., Vaiphei, K., Sharma, S.K., Ola, R.P. (2011). Garlic in health and disease. Nutrition Research Reviews, 24(1), 60-71.
  • [18] Amagase, H., Petesch, B.L., Matsuura, H., Kasuga, S., Itakura, Y. (2001). Intake of garlic and its bioactive components, The Journal of Nutrition, 131(3), 955-962.
  • [19] Zhang, X., Li, N., Lu, X., Liu, P., Qiao, X. (2016). Effects of temperature on the quality of black garlic. Journal of the Science of Food and Agriculture, 96(7), 2366-2372.
  • [20] Kim, J.S., Kang, O.J., Gweon, O.C. (2013). Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. Journal of Functional Foods, 5(1), 80–86.
  • [21] Özaydın, A. G., Arın, E., Önem, E. (2020). Türk mutfağında yeni bir fonksiyonel gıda olarak siyah sarımsak (Allium sativum L.): fenolik madde içeriği ve bakteriyel iletişim (Quorum Sensing) üzerine etkisi. Akademik Gıda, 18(1), 27-35.
  • [22] Liang, T., Wei, F., Lu, Y., Kodani, Y., Nakada, M., Miyakawa, T., Tanokura, M. (2015). Comprehensive NMR analysis of compositional changes of black garlic during thermal processing. Journal of Agricultural and Food Chemistry, 63(2), 683-691.
  • [23] Ríos-Ríos, K.L., Montilla, A., Olano, A., Villamiel, M. (2019). Physicochemical changes and sensorial properties during black garlic elaboration: A review. Trends in Food Science and Technology, 88, 459-467.
  • [24] Lu, X., Li, N., Qiao, X., Qiu, Z., Liu, P. (2018). Effects of thermal treatment on polysaccharide degradation during black garlic processing. LWT-Food Science and Technology, 95(61), 223-229.
  • [25] Yuan, H., Sun, L., Chen, M., Wang, J. (2018). An analysis of the changes on intermediate products during the thermal processing of black garlic. Food Chemistry, 239, 56-61.
  • [26] USDA. (2019). Garlic, raw. Https://Fdc.Nal.Usda.Gov/Fdc-App.Html#/Food-Details/169230/Nutrients Adresinden Elde Edildi.
  • [27] Chang, T. C., Jang, H. D., Lin, W. D. (2021). Biochemical properties of black garlic aged under different temperatures of commercial rice wine extracts in Taiwan. Journal of Food Measurement and Characterization, 15, 509-518.
  • [28] Choi, I.S., Cha, H.S., Lee, Y.S. (2014). Physicochemical and antioxidant properties of black garlic. Molecules, 19(10), 16811-16823.
  • [29] Qiu, Z., Zheng, Z., Zhang, B., Sun-Waterhouse, D., Qiao, X. (2020). Formation, nutritional value, and enhancement of characteristic. Comprehensive Reviews in Food Science and Food Safety, 1-34.
  • [30] Martínez-Casas, L., Lage-Yusty, M., López-Hernández, J. (2017). Changes in the aromatic profile, sugars, and bioactive compounds when purple garlic is transformed into black garlic. Journal of Agricultural and Food Chemistry, 65(49), 10804-10811.
  • [31] Abraham, K., Gürtler, R., Berg, K., Heinemeyer, G., Lampen, A., Appel, K.E. (2011). Toxicology and risk assessment of 5-Hydroxymethylfurfural in food. Molecular Nutrition and Food Research, 55(5), 667-678.
  • [32] Choudhary, A., Kumar, V., Kumar, S., Majid, I., Aggarwal, P., Suri, S. (2021). 5-Hydroxymethylfurfural (HMF) formation, occurrence and potential health concerns: recent developments. Toxin Reviews, 40(4), 545-561.
  • [33] Lu, X., Li, N., Qiao, X., Qiu, Z., Liu, P. (2017). Composition analysis and antioxidant properties of black garlic extract. Journal of Food and Drug Analysis, 25(2), 340-349.
  • [34] Sun, Y.E., Wang, W. (2018). Changes in nutritional and bio-functional compounds and antioxidant capacity during black garlic processing. Journal of Food Science and Technology, 55(2), 479-488.
  • [35] Lee, C.H., Chen, Y.T., Hsieh, H.J., Chen, K.T., Chen, Y.A., Wu, J.T., Tsai, M.S., Lin, J.A., Hsieh, C.W. (2020). Exploring epigallocatechin gallate impregnation to inhibit 5-hydroxymethylfurfural formation and the effect on antioxidant ability of black garlic. LWT- Food Science and Technology, 117, 108628.
  • [36] Lei, M., Zhang, Z., Liu, R., Zhang, M., Xu, M. (2015). The physicochemical changes of black garlic during thermal processing. Advance Journal of Food Science and Technology, 7(9), 712-715.
  • [37] Toledano-Medina, M.A., Pérez-Aparicio, J., Moreno-Rojas, R., Merinas-Amo, T. (2016). Evolution of some physicochemical and antioxidant properties of black garlic whole bulbs and peeled cloves. Food Chemistry, 199, 135-139.
  • [38] Koca, I., Tekguler, B., Koca, A.F. (2016). Some physical and chemical characteristics of Taşköprü and Chinese black garlics. Acta Horticulturae, 1143, 221–226.
  • [39] Molina-Calle, M., Priego-Capote, F., Luque de Castro, M.D. (2017). Headspace−GC–MS volatile profile of black garlic vs fresh garlic: evolution along fermentation and behavior under heating. LWT-Food Science and Technology, 80, 98-105.
  • [40] Yang, P., Song, H., Wang, L., Jing, H. (2019). Characterization of key aroma-active compounds in black garlic by sensory-directed flavor analysis. Journal of Agricultural and Food Chemistry, 67(28), 7926-7934.
  • [41] Jeong, Y.Y., Ryu, J.H., Shin, J.H., Kang, M.J., Kang, J.R., Han, J., Kang, D. (2016). Comparison of anti-oxidant and anti-inflammatory effects between fresh and aged black garlic extracts. Molecules, 21(4), 1-15.
  • [42] Kim, J.H., Nam, S.H., Rico, C.W., Kang, M.Y. (2012). A comparative study on the antioxidative and anti-allergic activities of fresh and aged black garlic extracts. International Journal of Food Science and Technology, 47(6), 1176-1182.
  • [43] Sato, E., Kohno, M., Niwano, Y. (2006). Increased level of tetrahydro-β-carboline derivatives in short-term fermented garlic. Plant Foods for Human Nutrition, 61(4), 175-178.
  • [44] Ichikawa, M., Yoshida, J., Ide, N., Sasaoka, T., Yamaguchi, H., Ono, K. (2006). Tetrahydro-β-carboline derivatives in aged garlic extract show antioxidant properties. Journal of Nutrition, 136(3), 726-731.
  • [45] Li, F., Cao, J., Liu, Q., Hu, X., Liao, X., Zhang, Y. (2020). Acceleration of the Maillard reaction and achievement of product quality by high pressure pretreatment during black garlic processing. Food Chemistry, 318, 126517.
  • [46] Ríos-Ríos, K.L., Vázquez-Barrios, M.E., Gaytán-Martínez, M., Olano, A., Montilla, A., Villamiel, M. (2018). 2-Furoylmethyl amino acids as indicators of Maillard reaction during the elaboration of black garlic. Food Chemistry, 240, 1106-1112.
  • [47] Chen, Y.T., Chen, Y.A., Lee, C.H., Wu, J.T., Cheng, K.C., Hsieh, C.W. (2020). A strategy for promoting γ-glutamyltransferase activity and enzymatic synthesis of S-allyl-(L)-cysteine in aged garlic via high hydrostatic pressure pretreatments. Food Chemistry, 316, 126347.
  • [48] Zhao, Y., Ding, Y., Wang, D., Deng, Y., Zhao, Y. (2021). Effect of high hydrostatic pressure conditions on the composition, morphology, rheology, thermal behavior, color, and stability of black garlic melanoidins. Food Chemistry, 337, 127790.
  • [49] Kandemirli, F., İçli, N., Bakır, T.K., Nazlı, B., Aydın, S. (2020). The investigation of the effect of freezing pretreatment on properties of black garlic produced from Kastamonu garlic. Food and Health, 6(1), 1-8.
  • [50] Li, N., Lu, X., Pei, H., Qiao, X. (2015). Effect of freezing pretreatment on the processing time and quality of black garlic. Journal of Food Process Engineering, 38(4), 329-335.

Black Garlic (Allium sativum) Production: Physical and Chemical Changes During Production

Year 2022, , 404 - 411, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224358

Abstract

Black garlic is obtained by keeping white garlic under controlled environment at 45-90°C temperature and 50-90% relative humidity until black color is obtained. During production, significant changes occur in physicochemical properties such as color, pH value, dry matter, reducing sugar content and nutritional value due to Maillard and enzymatic reactions. An increase in its antioxidant activity in comparison to white garlic makes it more preferable for health. Time required for producing black garlic, which is between 30 and 90 days, causes high energy consumption and time loss. In this review, scientific studies on physicochemical changes, production technology and applications used to increase production efficiency during black garlic production are summarized.

References

  • [1] Akan, S. (2014). Sarımsak (Allium sativum L.) tüketiminin insan sağlığına yararları. Akademik Gıda, 12(2), 95-100.
  • [2] Oosthuizen, C.B., Reid, A.M., Lall, N. (2018). Garlic (Allium sativum) and its associated molecules, as medicine. In Medicinal Plants for Holistic Health and Well-Being. Edited by N.Lall, Academic Press, 277-285p.
  • [3] TUİK, (2022). Bitkisel Üretim İstatistikleri, 2021, https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249 Adresinden Elde Edildi.
  • [4] Colín-González, A.L., Santana, R.A., Silva-Islas, C.A., Chánez-Cárdenas, M.E., Santamaría, A., Maldonado, P.D. (2012). The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxidative Medicine and Cellular Longevity, 1, 1-16.
  • [5] Czompa, A., Szoke, K., Prokisch, J., Gyongyosi, A., Bak, I., Balla, G., Tosaki, A., Lekli, I. (2018). Aged (black) versus raw garlic against ischemia/reperfusion-induced cardiac complications. International Journal of Molecular Sciences, 19(4), 1-14.
  • [6] Kimura, S., Tung, Y.C., Pan, M.H., Su, N.W., Lai, Y.J., Cheng, K.C. (2017). Black garlic: A critical review of its production, bioactivity, and application. Journal of Food and Drug Analysis, 25(1), 62-70.
  • [7] Bae, S.E., Cho, S.Y., Won, Y.D., Lee, S.H., Park, H.J. (2014). Changes in S-allyl cysteine contents and physicochemical properties of black garlic during heat treatment. LWT - Food Science and Technology, 55(1), 397-402.
  • [8] Medina, M.Á.T., Pérez-Aparicio, J., Moreno-Ortega, A., Moreno-Rojas, R. (2019). Influence of variety and storage time of fresh garlic on the physicochemical and antioxidant properties of black garlic. Foods, 8(8), 314-324.
  • [9] Jung, Y.M., Lee, S.H., Lee, D.S., You, M.J., Chung, I.K., Cheon, W.H., Kwon, Y.S., Lee, Y.J., Ku, S.K. (2011). Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects. Nutrition Research, 31(5), 387-396.
  • [10] Wang, D., Feng, Y., Liu, J., Yan, J., Wang, M., Changlong, J.S. (2010). Black garlic (Allium sativum) extracts enhance the immune system, Medicinal and Aromatic Plant Science and Biotechnology, 4(1), 37-40. [11] Kim, D.G., Kang, M.J., Hong, S.S., Choi, Y.H., Shin, J.H. (2017). Antiinflammatory effects of functionally active compounds isolated from aged black garlic. Phytotherapy Research, 31(1), 53-61.
  • [12] Liu, J., Zhang, G., Cong, X., Wen, C. (2018). Black garlic improves heart function in patients with coronary heart disease by improving circulating antioxidant levels. Frontiers in Physiology, 9, 1-11.
  • [13] Kim, J.H., Yu, S.H., Cho, Y.J., Pan, J.H., Cho, H.T., Kim, J.H., Bong, H., Lee, Y., Chang, M.H., Jeong, Y.J., Choi, G., Kim, Y.J. (2017). Preparation of S-Allylcysteine-enriched black garlic juice and its antidiabetic effects in streptozotocin-induced insulin-deficient mice. Journal of Agricultural and Food Chemistry, 65(2), 358-363.
  • [14] Medina, M.Á.T., Merinas-Amo, T., Fernández-Bedmar, Z., Font, R., Río-Celestino, M., Pérez-Aparicio, J., Moreno-Ortega, A., Alonso-Moraga, Á., Moreno-Rojas, R. (2019). Physicochemical characterization and biological in vitro assays. Foods, 8(220), 1-18.
  • [15] Canbolat, E. (2017). Sarımsağın besinsel yönden ve sağlık açısından değerlendirilmesi. Uluslararası Taşköprü Pompeiopolis Bilim Kültür Sanat Araştırmaları Sempozyumu, Nisan 10-12, 2017, Kastamonu, Türkiye, 935-949p.
  • [16] Kang, O.J. (2016). Physicochemical characteristics of black garlic after different thermal processing steps. Preventive Nutrition and Food Science, 21(4), 348-354.
  • [17] Rana, S.V., Pal, R., Vaiphei, K., Sharma, S.K., Ola, R.P. (2011). Garlic in health and disease. Nutrition Research Reviews, 24(1), 60-71.
  • [18] Amagase, H., Petesch, B.L., Matsuura, H., Kasuga, S., Itakura, Y. (2001). Intake of garlic and its bioactive components, The Journal of Nutrition, 131(3), 955-962.
  • [19] Zhang, X., Li, N., Lu, X., Liu, P., Qiao, X. (2016). Effects of temperature on the quality of black garlic. Journal of the Science of Food and Agriculture, 96(7), 2366-2372.
  • [20] Kim, J.S., Kang, O.J., Gweon, O.C. (2013). Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. Journal of Functional Foods, 5(1), 80–86.
  • [21] Özaydın, A. G., Arın, E., Önem, E. (2020). Türk mutfağında yeni bir fonksiyonel gıda olarak siyah sarımsak (Allium sativum L.): fenolik madde içeriği ve bakteriyel iletişim (Quorum Sensing) üzerine etkisi. Akademik Gıda, 18(1), 27-35.
  • [22] Liang, T., Wei, F., Lu, Y., Kodani, Y., Nakada, M., Miyakawa, T., Tanokura, M. (2015). Comprehensive NMR analysis of compositional changes of black garlic during thermal processing. Journal of Agricultural and Food Chemistry, 63(2), 683-691.
  • [23] Ríos-Ríos, K.L., Montilla, A., Olano, A., Villamiel, M. (2019). Physicochemical changes and sensorial properties during black garlic elaboration: A review. Trends in Food Science and Technology, 88, 459-467.
  • [24] Lu, X., Li, N., Qiao, X., Qiu, Z., Liu, P. (2018). Effects of thermal treatment on polysaccharide degradation during black garlic processing. LWT-Food Science and Technology, 95(61), 223-229.
  • [25] Yuan, H., Sun, L., Chen, M., Wang, J. (2018). An analysis of the changes on intermediate products during the thermal processing of black garlic. Food Chemistry, 239, 56-61.
  • [26] USDA. (2019). Garlic, raw. Https://Fdc.Nal.Usda.Gov/Fdc-App.Html#/Food-Details/169230/Nutrients Adresinden Elde Edildi.
  • [27] Chang, T. C., Jang, H. D., Lin, W. D. (2021). Biochemical properties of black garlic aged under different temperatures of commercial rice wine extracts in Taiwan. Journal of Food Measurement and Characterization, 15, 509-518.
  • [28] Choi, I.S., Cha, H.S., Lee, Y.S. (2014). Physicochemical and antioxidant properties of black garlic. Molecules, 19(10), 16811-16823.
  • [29] Qiu, Z., Zheng, Z., Zhang, B., Sun-Waterhouse, D., Qiao, X. (2020). Formation, nutritional value, and enhancement of characteristic. Comprehensive Reviews in Food Science and Food Safety, 1-34.
  • [30] Martínez-Casas, L., Lage-Yusty, M., López-Hernández, J. (2017). Changes in the aromatic profile, sugars, and bioactive compounds when purple garlic is transformed into black garlic. Journal of Agricultural and Food Chemistry, 65(49), 10804-10811.
  • [31] Abraham, K., Gürtler, R., Berg, K., Heinemeyer, G., Lampen, A., Appel, K.E. (2011). Toxicology and risk assessment of 5-Hydroxymethylfurfural in food. Molecular Nutrition and Food Research, 55(5), 667-678.
  • [32] Choudhary, A., Kumar, V., Kumar, S., Majid, I., Aggarwal, P., Suri, S. (2021). 5-Hydroxymethylfurfural (HMF) formation, occurrence and potential health concerns: recent developments. Toxin Reviews, 40(4), 545-561.
  • [33] Lu, X., Li, N., Qiao, X., Qiu, Z., Liu, P. (2017). Composition analysis and antioxidant properties of black garlic extract. Journal of Food and Drug Analysis, 25(2), 340-349.
  • [34] Sun, Y.E., Wang, W. (2018). Changes in nutritional and bio-functional compounds and antioxidant capacity during black garlic processing. Journal of Food Science and Technology, 55(2), 479-488.
  • [35] Lee, C.H., Chen, Y.T., Hsieh, H.J., Chen, K.T., Chen, Y.A., Wu, J.T., Tsai, M.S., Lin, J.A., Hsieh, C.W. (2020). Exploring epigallocatechin gallate impregnation to inhibit 5-hydroxymethylfurfural formation and the effect on antioxidant ability of black garlic. LWT- Food Science and Technology, 117, 108628.
  • [36] Lei, M., Zhang, Z., Liu, R., Zhang, M., Xu, M. (2015). The physicochemical changes of black garlic during thermal processing. Advance Journal of Food Science and Technology, 7(9), 712-715.
  • [37] Toledano-Medina, M.A., Pérez-Aparicio, J., Moreno-Rojas, R., Merinas-Amo, T. (2016). Evolution of some physicochemical and antioxidant properties of black garlic whole bulbs and peeled cloves. Food Chemistry, 199, 135-139.
  • [38] Koca, I., Tekguler, B., Koca, A.F. (2016). Some physical and chemical characteristics of Taşköprü and Chinese black garlics. Acta Horticulturae, 1143, 221–226.
  • [39] Molina-Calle, M., Priego-Capote, F., Luque de Castro, M.D. (2017). Headspace−GC–MS volatile profile of black garlic vs fresh garlic: evolution along fermentation and behavior under heating. LWT-Food Science and Technology, 80, 98-105.
  • [40] Yang, P., Song, H., Wang, L., Jing, H. (2019). Characterization of key aroma-active compounds in black garlic by sensory-directed flavor analysis. Journal of Agricultural and Food Chemistry, 67(28), 7926-7934.
  • [41] Jeong, Y.Y., Ryu, J.H., Shin, J.H., Kang, M.J., Kang, J.R., Han, J., Kang, D. (2016). Comparison of anti-oxidant and anti-inflammatory effects between fresh and aged black garlic extracts. Molecules, 21(4), 1-15.
  • [42] Kim, J.H., Nam, S.H., Rico, C.W., Kang, M.Y. (2012). A comparative study on the antioxidative and anti-allergic activities of fresh and aged black garlic extracts. International Journal of Food Science and Technology, 47(6), 1176-1182.
  • [43] Sato, E., Kohno, M., Niwano, Y. (2006). Increased level of tetrahydro-β-carboline derivatives in short-term fermented garlic. Plant Foods for Human Nutrition, 61(4), 175-178.
  • [44] Ichikawa, M., Yoshida, J., Ide, N., Sasaoka, T., Yamaguchi, H., Ono, K. (2006). Tetrahydro-β-carboline derivatives in aged garlic extract show antioxidant properties. Journal of Nutrition, 136(3), 726-731.
  • [45] Li, F., Cao, J., Liu, Q., Hu, X., Liao, X., Zhang, Y. (2020). Acceleration of the Maillard reaction and achievement of product quality by high pressure pretreatment during black garlic processing. Food Chemistry, 318, 126517.
  • [46] Ríos-Ríos, K.L., Vázquez-Barrios, M.E., Gaytán-Martínez, M., Olano, A., Montilla, A., Villamiel, M. (2018). 2-Furoylmethyl amino acids as indicators of Maillard reaction during the elaboration of black garlic. Food Chemistry, 240, 1106-1112.
  • [47] Chen, Y.T., Chen, Y.A., Lee, C.H., Wu, J.T., Cheng, K.C., Hsieh, C.W. (2020). A strategy for promoting γ-glutamyltransferase activity and enzymatic synthesis of S-allyl-(L)-cysteine in aged garlic via high hydrostatic pressure pretreatments. Food Chemistry, 316, 126347.
  • [48] Zhao, Y., Ding, Y., Wang, D., Deng, Y., Zhao, Y. (2021). Effect of high hydrostatic pressure conditions on the composition, morphology, rheology, thermal behavior, color, and stability of black garlic melanoidins. Food Chemistry, 337, 127790.
  • [49] Kandemirli, F., İçli, N., Bakır, T.K., Nazlı, B., Aydın, S. (2020). The investigation of the effect of freezing pretreatment on properties of black garlic produced from Kastamonu garlic. Food and Health, 6(1), 1-8.
  • [50] Li, N., Lu, X., Pei, H., Qiao, X. (2015). Effect of freezing pretreatment on the processing time and quality of black garlic. Journal of Food Process Engineering, 38(4), 329-335.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Papers
Authors

Nursen Erol This is me 0000-0002-3035-741X

Seda Ersus This is me 0000-0003-0475-4099

Publication Date December 27, 2022
Submission Date April 9, 2021
Published in Issue Year 2022

Cite

APA Erol, N., & Ersus, S. (2022). Siyah Sarımsak (Allium sativum) Üretimi: Üretim Sırasında Gerçekleşen Fiziksel ve Kimyasal Değişimler. Akademik Gıda, 20(4), 404-411. https://doi.org/10.24323/akademik-gida.1224358
AMA Erol N, Ersus S. Siyah Sarımsak (Allium sativum) Üretimi: Üretim Sırasında Gerçekleşen Fiziksel ve Kimyasal Değişimler. Akademik Gıda. December 2022;20(4):404-411. doi:10.24323/akademik-gida.1224358
Chicago Erol, Nursen, and Seda Ersus. “Siyah Sarımsak (Allium Sativum) Üretimi: Üretim Sırasında Gerçekleşen Fiziksel Ve Kimyasal Değişimler”. Akademik Gıda 20, no. 4 (December 2022): 404-11. https://doi.org/10.24323/akademik-gida.1224358.
EndNote Erol N, Ersus S (December 1, 2022) Siyah Sarımsak (Allium sativum) Üretimi: Üretim Sırasında Gerçekleşen Fiziksel ve Kimyasal Değişimler. Akademik Gıda 20 4 404–411.
IEEE N. Erol and S. Ersus, “Siyah Sarımsak (Allium sativum) Üretimi: Üretim Sırasında Gerçekleşen Fiziksel ve Kimyasal Değişimler”, Akademik Gıda, vol. 20, no. 4, pp. 404–411, 2022, doi: 10.24323/akademik-gida.1224358.
ISNAD Erol, Nursen - Ersus, Seda. “Siyah Sarımsak (Allium Sativum) Üretimi: Üretim Sırasında Gerçekleşen Fiziksel Ve Kimyasal Değişimler”. Akademik Gıda 20/4 (December 2022), 404-411. https://doi.org/10.24323/akademik-gida.1224358.
JAMA Erol N, Ersus S. Siyah Sarımsak (Allium sativum) Üretimi: Üretim Sırasında Gerçekleşen Fiziksel ve Kimyasal Değişimler. Akademik Gıda. 2022;20:404–411.
MLA Erol, Nursen and Seda Ersus. “Siyah Sarımsak (Allium Sativum) Üretimi: Üretim Sırasında Gerçekleşen Fiziksel Ve Kimyasal Değişimler”. Akademik Gıda, vol. 20, no. 4, 2022, pp. 404-11, doi:10.24323/akademik-gida.1224358.
Vancouver Erol N, Ersus S. Siyah Sarımsak (Allium sativum) Üretimi: Üretim Sırasında Gerçekleşen Fiziksel ve Kimyasal Değişimler. Akademik Gıda. 2022;20(4):404-11.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).