Research Article
BibTex RIS Cite

Use of Microwave Drying for Production of Protein-Oil Based Edible Films

Year 2023, , 274 - 283, 30.10.2023
https://doi.org/10.24323/akademik-gida.1382932

Abstract

Soy protein isolate (SPI)-sunflower seed oil (SO) based edible films were produced from freeze-dried composite powder and for the first time, microwave drying (MD) was applied. The required drying time was shortened from 1-3 days at room condition to 3-6 min with microwave heating. Improved thermal stability, better water barrier property, increased solubility and protected natural yellow color were detected in edible films dried at 800W microwave power in comparison to 300W; however, at the same time, weakened film transparency and decreased mechanical properties were found. The overall findings of this study revealed that microwave drying, a new edible film drying method, could be safely used to produce edible films within minutes without losing film properties. Therefore, it could be easily concluded that this new drying for edible films might have a greate potential for the industrial production of biodegradable films.

References

  • [1] Tural, S., Sarıcaoğlu, F.T., Turhan, S. (2017). Yenilebilir film ve kaplamalar: Üretimleri, uygulama yöntemleri, fonksiyonları ve kaslı gıdalarda kullanımları. Akademik Gıda, 15(1), 84-94.
  • [2] Lee, J.S., Lee, E.S., Han, J. (2020). Enhancement of the water-resistance properties of an edible film prepared from mung bean starch via the incorporation of sunflower seed oil. Scientific Reports, 10(1), 1-15.
  • [3] Jeevahan, J.J., Chandrasekaran, M., Venkatesan, S., Sriram, V., Joseph, G.B., Mageshwaran, G., Durairaj, R. (2020). Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends in Food Science & Technology, 100, 210-222.
  • [4] De Pilli, T. (2020). Development of a vegetable oil and egg proteins edible film to replace preservatives and primary packaging of sweet baked goods. Food Control, 107273.
  • [5] Beikzadeh, S., Ghorbani, M., Shahbazi, N., Izadi, F., Pilevar, Z., Mortazavian, A.M. (2020). The effects of novel thermal and nonthermal technologies on the properties of edible food packaging. Food Engineering Reviews, 12(3), 333-345.
  • [6] Erdem, B.G., Kaya, S. (2022). Characterization and application of novel composite films based on soy protein isolate and sunflower oil produced using freeze drying method. Food Chemistry, 366, 130709.
  • [7] Kaya, S., Kaya, A. (2000). Microwave drying effects on properties of whey protein isolate edible films. Journal of Food Engineering, 43(2), 91-96.
  • [8] Otoni, C.G., Avena-Bustillos, R.J., Olsen, C.W., Bilbao-Sáinz, C., McHugh, T.H. (2016). Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocolloids, 57, 72-79.
  • [9] Xue, F., Gu, Y., Wang, Y., Li, C., Adhikari, B. (2019). Encapsulation of essential oil in emulsion based edible films prepared by soy protein isolate-gum acacia conjugates. Food Hydrocolloids, 96, 178-189.
  • [10] Rani, S., Kumar, R. (2019). A review on material and antimicrobial properties of soy protein isolate film. Journal of Polymers and the Environment, 27(8), 1613-1628.
  • [11] Guilbert, S. (1986). Technology and application of edible protective films. Food Packaging and Preservation: Theory and Practice. Mathlouthi M.(ed), Elsevier Applied Science, London.
  • [12] Cárdenas, G., Díaz, J., Meléndrez, M., Cruzat, C. (2008). Physicochemical properties of edible films from chitosan composites obtained by microwave heating. Polymer Bulletin, 61(6), 737-748.
  • [13] Erdem, B.G., Kaya, S. (2021). Production and application of freeze dried biocomposite coating powders from sunflower oil and soy protein or whey protein isolates. Food chemistry, 339, 127976.
  • [14] Kevij, H.T., Salami, M., Mohammadian, M., Khodadadi, M. (2020). Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method. Food Hydrocolloids, 108, 106026.
  • [15] Gökkaya Erdem, B., Diblan, S., Kaya, S. (2021). A Comprehensive study on sorption, water barrier, and physicochemical properties of some protein-and carbohydrate-based edible films. Food and Bioprocess Technology, 1-19.
  • [16] Cao, L., Ge, T., Meng, F., Xu, S., Li, J., Wang, L. (2020). An edible oil packaging film with improved barrier properties and heat sealability from cassia gum incorporating carboxylated cellulose nano crystal whisker. Food Hydrocolloids, 98, 105251.
  • [17] Liu, H., Liu, C., Peng, S., Pan, B., Lu, C. (2018). Effect of polyethyleneimine modified graphene on the mechanical and water vapor barrier properties of methyl cellulose composite films. Carbohydrate Polymers, 182, 52-60.
  • [18] Ramos, Ó.L., Reinas, I., Silva, S.I., Fernandes, J.C., Cerqueira, M.A., Pereira, R.N., Vicente, A.A., Pocas, M.F., Pintado, M.E., Malcata, F.X. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 30(1), 110-122.
  • [19] Pelissari, F.M., Andrade-Mahecha, M.M., do Amaral Sobral, P.J., Menegalli, F.C. (2013). Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloids, 30(2), 681-690.
  • [20] Sukyai, P., Anongjanya, P., Bunyahwuthakul, N., Kongsin, K., Harnkarnsujarit, N., Sukatta, U., Sothornvit, R., Chollakup, R. (2018). Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Research International, 107, 528-535.
  • [21] Galus, S. (2018). Functional properties of soy protein isolate edible films as affected by rapeseed oil concentration. Food Hydrocolloids, 85, 233-241.
  • [22] Hopkins, E.J., Chang, C., Lam, R.S., Nickerson, M.T. (2015). Effects of flaxseed oil concentration on the performance of a soy protein isolate-based emulsion-type film. Food Research International, 67, 418-425.
  • [23] Kurt, A., Kahyaoglu, T. (2014). Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers, 104, 50-58.
  • [24] Kanagaraj, S., Varanda, F.R., Zhil’tsova, T.V., Oliveira, M.S., Simões, J.A. (2007). Mechanical properties of high density polyethylene/carbon nanotube composites. Composites Science and Technology, 67(15-16), 3071-3077.
  • [25] Sadeghi-Varkani, A., Emam-Djomeh, Z., Askari, G. (2018). Physicochemical and microstructural properties of a novel edible film synthesized from Balangu seed mucilage. International Journal of Biological Macromolecules, 108, 1110-1119.
  • [26] Silva, K., Fonseca, T., Amado, L., Mauro, M. (2018). Physicochemical and microstructural properties of whey protein isolate-based films with addition of pectin. Food Packaging and Shelf Life, 16, 122-128.
  • [27] Nicolai, T., Britten, M., Schmitt, C. (2011). β-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids, 25(8), 1945-1962.
  • [28] Pereira, R.N., Souza, B.W., Cerqueira, M.A., Teixeira, J.A., Vicente, A.A. (2010). Effects of electric fields on protein unfolding and aggregation: Influence on edible films formation. Biomacromolecules, 11(11), 2912-2918.
  • [29] Erdem, B.G., Kaya, S. (2022b). Edible film fabrication modified by freeze drying from whey protein isolate and sunflower oil: Functional property evaluation. Food Packaging and Shelf Life, 33, 100887.
  • [30] Ye, Q., Han, Y., Zhang, J., Zhang, W., Xia, C., Li,J. (2019). Bio-based films with improved water resistance derived from soy protein isolate and stearic acid via bioconjugation. Journal of Cleaner Production, 214, 125-131.
  • [31] dos Santos Paglione, I., Galindo, M.V., de Medeiros, J.A.S., Yamashita, F., Alvim, I. D., Ferreira Grosso, C.R., Shirai, M.A. (2019). Comparative study of the properties of soy protein concentrate films containing free and encapsulated oregano essential oil. Food Packaging and Shelf Life, 22, 100419.
  • [32] Galus, S., Kadzi´nska, J. (2016). Whey protein edible films modified with almond and walnut oils. Food Hydrocolloids, 52(Supplement C), 78–86.
  • [33] Farhan, A., Hani, N.M. (2017). Characterization of edible packagingfilms based on semi-refined kappa-carrageenan plasticizedwith glycerol and sorbitol. Food Hydrocolloids, 64, 48–58.
  • [34] Ogale, A.A., Cunningham, P., Dawson, P.L., Acton, J.C. (2000). Viscoelastic, thermal, and microstructural characterization of soy protein isolate films. Journal of Food Science, 65(4), 672-679.

Protein-Yağ Bazlı Yenilebilir Filmlerin Üretiminde Mikrodalga Kurutmanın Kullanılması

Year 2023, , 274 - 283, 30.10.2023
https://doi.org/10.24323/akademik-gida.1382932

Abstract

Dondurularak kurutulmuş kompozit tozdan soya proteini izolatı (SPI)-ayçiçeği çekirdeği yağı (SO) bazlı yenilebilir filmler üretilmiş ve ilk kez mikrodalga ile kurutma (MD) yöntemi uygulanmıştır. Gerekli kuruma süresi oda koşullarında 1-3 gün iken mikrodalga ısıtma ile bu süre 3-6 dakikaya kadar düşürülmüştür. 300W ile karşılaştırıldığında 800W mikrodalga güç seviyesinde kurutulan örneklerde kuvvetlenmiş termal kararlılık, yüksek su bariyeri özelliği, artan çözünürlük ve zarar görmemiş doğal sarı renk tespit edilmiş, ancak bununla beraber film şeffaflığında ve mekanik özelliklerde azalma olduğu anlaşılmıştır. Bu çalışmanın genel bulguları, yeni bir yenilebilir film kurutma yöntemi olan mikrodalga kurutmanın, film özelliklerini kaybetmeden dakikalar içinde yenilebilir filmler üretmek için güvenli bir şekilde kullanılabileceğini ortaya koymuştur. Bu nedenle, yenilebilir filmlere yönelik bu yeni kurutma yönteminin biyobozunur filmlerin endüstriyel üretimi için büyük bir potansiyele sahip olabileceği sonucuna rahatlıkla varılabilir.

References

  • [1] Tural, S., Sarıcaoğlu, F.T., Turhan, S. (2017). Yenilebilir film ve kaplamalar: Üretimleri, uygulama yöntemleri, fonksiyonları ve kaslı gıdalarda kullanımları. Akademik Gıda, 15(1), 84-94.
  • [2] Lee, J.S., Lee, E.S., Han, J. (2020). Enhancement of the water-resistance properties of an edible film prepared from mung bean starch via the incorporation of sunflower seed oil. Scientific Reports, 10(1), 1-15.
  • [3] Jeevahan, J.J., Chandrasekaran, M., Venkatesan, S., Sriram, V., Joseph, G.B., Mageshwaran, G., Durairaj, R. (2020). Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends in Food Science & Technology, 100, 210-222.
  • [4] De Pilli, T. (2020). Development of a vegetable oil and egg proteins edible film to replace preservatives and primary packaging of sweet baked goods. Food Control, 107273.
  • [5] Beikzadeh, S., Ghorbani, M., Shahbazi, N., Izadi, F., Pilevar, Z., Mortazavian, A.M. (2020). The effects of novel thermal and nonthermal technologies on the properties of edible food packaging. Food Engineering Reviews, 12(3), 333-345.
  • [6] Erdem, B.G., Kaya, S. (2022). Characterization and application of novel composite films based on soy protein isolate and sunflower oil produced using freeze drying method. Food Chemistry, 366, 130709.
  • [7] Kaya, S., Kaya, A. (2000). Microwave drying effects on properties of whey protein isolate edible films. Journal of Food Engineering, 43(2), 91-96.
  • [8] Otoni, C.G., Avena-Bustillos, R.J., Olsen, C.W., Bilbao-Sáinz, C., McHugh, T.H. (2016). Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocolloids, 57, 72-79.
  • [9] Xue, F., Gu, Y., Wang, Y., Li, C., Adhikari, B. (2019). Encapsulation of essential oil in emulsion based edible films prepared by soy protein isolate-gum acacia conjugates. Food Hydrocolloids, 96, 178-189.
  • [10] Rani, S., Kumar, R. (2019). A review on material and antimicrobial properties of soy protein isolate film. Journal of Polymers and the Environment, 27(8), 1613-1628.
  • [11] Guilbert, S. (1986). Technology and application of edible protective films. Food Packaging and Preservation: Theory and Practice. Mathlouthi M.(ed), Elsevier Applied Science, London.
  • [12] Cárdenas, G., Díaz, J., Meléndrez, M., Cruzat, C. (2008). Physicochemical properties of edible films from chitosan composites obtained by microwave heating. Polymer Bulletin, 61(6), 737-748.
  • [13] Erdem, B.G., Kaya, S. (2021). Production and application of freeze dried biocomposite coating powders from sunflower oil and soy protein or whey protein isolates. Food chemistry, 339, 127976.
  • [14] Kevij, H.T., Salami, M., Mohammadian, M., Khodadadi, M. (2020). Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method. Food Hydrocolloids, 108, 106026.
  • [15] Gökkaya Erdem, B., Diblan, S., Kaya, S. (2021). A Comprehensive study on sorption, water barrier, and physicochemical properties of some protein-and carbohydrate-based edible films. Food and Bioprocess Technology, 1-19.
  • [16] Cao, L., Ge, T., Meng, F., Xu, S., Li, J., Wang, L. (2020). An edible oil packaging film with improved barrier properties and heat sealability from cassia gum incorporating carboxylated cellulose nano crystal whisker. Food Hydrocolloids, 98, 105251.
  • [17] Liu, H., Liu, C., Peng, S., Pan, B., Lu, C. (2018). Effect of polyethyleneimine modified graphene on the mechanical and water vapor barrier properties of methyl cellulose composite films. Carbohydrate Polymers, 182, 52-60.
  • [18] Ramos, Ó.L., Reinas, I., Silva, S.I., Fernandes, J.C., Cerqueira, M.A., Pereira, R.N., Vicente, A.A., Pocas, M.F., Pintado, M.E., Malcata, F.X. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 30(1), 110-122.
  • [19] Pelissari, F.M., Andrade-Mahecha, M.M., do Amaral Sobral, P.J., Menegalli, F.C. (2013). Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloids, 30(2), 681-690.
  • [20] Sukyai, P., Anongjanya, P., Bunyahwuthakul, N., Kongsin, K., Harnkarnsujarit, N., Sukatta, U., Sothornvit, R., Chollakup, R. (2018). Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Research International, 107, 528-535.
  • [21] Galus, S. (2018). Functional properties of soy protein isolate edible films as affected by rapeseed oil concentration. Food Hydrocolloids, 85, 233-241.
  • [22] Hopkins, E.J., Chang, C., Lam, R.S., Nickerson, M.T. (2015). Effects of flaxseed oil concentration on the performance of a soy protein isolate-based emulsion-type film. Food Research International, 67, 418-425.
  • [23] Kurt, A., Kahyaoglu, T. (2014). Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers, 104, 50-58.
  • [24] Kanagaraj, S., Varanda, F.R., Zhil’tsova, T.V., Oliveira, M.S., Simões, J.A. (2007). Mechanical properties of high density polyethylene/carbon nanotube composites. Composites Science and Technology, 67(15-16), 3071-3077.
  • [25] Sadeghi-Varkani, A., Emam-Djomeh, Z., Askari, G. (2018). Physicochemical and microstructural properties of a novel edible film synthesized from Balangu seed mucilage. International Journal of Biological Macromolecules, 108, 1110-1119.
  • [26] Silva, K., Fonseca, T., Amado, L., Mauro, M. (2018). Physicochemical and microstructural properties of whey protein isolate-based films with addition of pectin. Food Packaging and Shelf Life, 16, 122-128.
  • [27] Nicolai, T., Britten, M., Schmitt, C. (2011). β-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids, 25(8), 1945-1962.
  • [28] Pereira, R.N., Souza, B.W., Cerqueira, M.A., Teixeira, J.A., Vicente, A.A. (2010). Effects of electric fields on protein unfolding and aggregation: Influence on edible films formation. Biomacromolecules, 11(11), 2912-2918.
  • [29] Erdem, B.G., Kaya, S. (2022b). Edible film fabrication modified by freeze drying from whey protein isolate and sunflower oil: Functional property evaluation. Food Packaging and Shelf Life, 33, 100887.
  • [30] Ye, Q., Han, Y., Zhang, J., Zhang, W., Xia, C., Li,J. (2019). Bio-based films with improved water resistance derived from soy protein isolate and stearic acid via bioconjugation. Journal of Cleaner Production, 214, 125-131.
  • [31] dos Santos Paglione, I., Galindo, M.V., de Medeiros, J.A.S., Yamashita, F., Alvim, I. D., Ferreira Grosso, C.R., Shirai, M.A. (2019). Comparative study of the properties of soy protein concentrate films containing free and encapsulated oregano essential oil. Food Packaging and Shelf Life, 22, 100419.
  • [32] Galus, S., Kadzi´nska, J. (2016). Whey protein edible films modified with almond and walnut oils. Food Hydrocolloids, 52(Supplement C), 78–86.
  • [33] Farhan, A., Hani, N.M. (2017). Characterization of edible packagingfilms based on semi-refined kappa-carrageenan plasticizedwith glycerol and sorbitol. Food Hydrocolloids, 64, 48–58.
  • [34] Ogale, A.A., Cunningham, P., Dawson, P.L., Acton, J.C. (2000). Viscoelastic, thermal, and microstructural characterization of soy protein isolate films. Journal of Food Science, 65(4), 672-679.
There are 34 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Burcu Gökkaya Erdem 0000-0002-4112-5729

Publication Date October 30, 2023
Submission Date May 15, 2023
Published in Issue Year 2023

Cite

APA Gökkaya Erdem, B. (2023). Use of Microwave Drying for Production of Protein-Oil Based Edible Films. Akademik Gıda, 21(3), 274-283. https://doi.org/10.24323/akademik-gida.1382932
AMA Gökkaya Erdem B. Use of Microwave Drying for Production of Protein-Oil Based Edible Films. Akademik Gıda. October 2023;21(3):274-283. doi:10.24323/akademik-gida.1382932
Chicago Gökkaya Erdem, Burcu. “Use of Microwave Drying for Production of Protein-Oil Based Edible Films”. Akademik Gıda 21, no. 3 (October 2023): 274-83. https://doi.org/10.24323/akademik-gida.1382932.
EndNote Gökkaya Erdem B (October 1, 2023) Use of Microwave Drying for Production of Protein-Oil Based Edible Films. Akademik Gıda 21 3 274–283.
IEEE B. Gökkaya Erdem, “Use of Microwave Drying for Production of Protein-Oil Based Edible Films”, Akademik Gıda, vol. 21, no. 3, pp. 274–283, 2023, doi: 10.24323/akademik-gida.1382932.
ISNAD Gökkaya Erdem, Burcu. “Use of Microwave Drying for Production of Protein-Oil Based Edible Films”. Akademik Gıda 21/3 (October 2023), 274-283. https://doi.org/10.24323/akademik-gida.1382932.
JAMA Gökkaya Erdem B. Use of Microwave Drying for Production of Protein-Oil Based Edible Films. Akademik Gıda. 2023;21:274–283.
MLA Gökkaya Erdem, Burcu. “Use of Microwave Drying for Production of Protein-Oil Based Edible Films”. Akademik Gıda, vol. 21, no. 3, 2023, pp. 274-83, doi:10.24323/akademik-gida.1382932.
Vancouver Gökkaya Erdem B. Use of Microwave Drying for Production of Protein-Oil Based Edible Films. Akademik Gıda. 2023;21(3):274-83.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).