Research Article
BibTex RIS Cite

Koşullandırılmış Kalem Grafit Elektrot Kullanılarak Vanilinin Voltammetrik Tayini

Year 2019, Volume: 17 Issue: 1, 1 - 8, 26.03.2019
https://doi.org/10.24323/akademik-gida.543981

Abstract

Bu çalışmada, bir elektrot malzemesi olarak
kurşun kalem ucu kullanılarak ticari gıda ürünlerinde vanilin tayini için
hassas bir voltammetrik yöntem önerilmiştir. Vanilinin, önceden oksitlenmiş
grafit kalem elektrotu (pre-oxidized pencil graphite electrode, p-PGE)
kullanılarak pH 8.0 Britton Robinson tampon çözeltisinde kaydedilen döngüsel
voltammogramlarında, yaklaşık 520 mV’da (Ag/AgCl elektroduna karşı) vanilinin
yükseltgenmesine atfedilen keskin bir pik gözlenmiştir. Daha sonra, vanilinin
p-PGE’de yükseltgenmesine dayalı voltammetrik vanilin tayini, optimize koşullar
altında diferansiyel puls voltammetri (DPV) tekniği kullanılarak
gerçekleştirildi. DPV sonuçları, vanilinin yükseltgenmesine ait pik akımının, 0,16
µM (3S
b’ye dayanarak) gözlenebilme sınırı ile birlikte 0,5-10,0 µM vanilin
derişim aralığında doğrusal olarak arttığını göstermektedir. Çalışmanın son
aşamasında, bu voltammetrik yöntem vanilya şurubu örneklerinde vanilin tayinine
uygulanmıştır. Elde edilen sonuçların numune şişesindeki etiketli değerler ile
iyi bir uyum içinde olduğu tespit edilmiştir.

References

  • [1] Sinha, A.K., Sharma, U.K., Sharma, N. (2008). A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents. International Journal of Food Sciences and Nutrition, 59(4), 299-326.
  • [2] Bezerra, D.P., Soares, A.K.N., De Sousa, D.P. (2016). Overview of the role of vanillin on redox status and cancer development. Oxidative Medicine and Cellular Longevity 2016, Article ID 9734816, 9 pages.
  • [3] Rasoamandrary, N., Fernandes, A.M., Bashari, M., Masamba, K., Xuemin, X. (2013). Improved extraction of vanillin 4-hydroxy-3-methoxybenzaldehyde from cured vanilla beans using ultrasound-assisted extraction: A comparison of ultrasound-assisted and hot water bath extraction. Akademik Gıda, 11(1), 6-12.
  • [4] Rao, S.R., Ravishankar, G.A. (2000). Vanilla flavour: production by conventional and biotechnological routes. Journal of the Science of Food and Agriculture, 80, 289-304.
  • [5] Sinha, A.K., Verma, S.C., Sharma, U.K. (2007). Development and validation of an RP‐HPLC method for quantitative determination of vanillin and related phenolic compounds in Vanilla planifolia. Journal of Separation Science, 30, 15-20.
  • [6] De Jager, L.S., Perfetti, G.A., Diachenko, G.W. (2008). Comparison of headspace-SPME-GC–MS and LC–MS for the detection and quantification of coumarin, vanillin, and ethyl vanillin in vanilla extract products. Food Chemistry, 107, 1701-1709.
  • [7] Wang, Z., Zeng, G., Wei, X., Ding, B., Huang, C., Xu, B. (2016). Determination of vanillin and ethyl-vanillin in milk powder by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Food Analytical Methods, 9, 3360-3366.
  • [8] Santos, I.C., Smuts, J., Schug, K.A. (2017). Rapid profiling and authentication of vanilla extracts using gas chromatography-vacuum ultraviolet spectroscopy. Food Analytical Methods, 10, 4068-4078.
  • [9] Li, R., Jiang, Z., Mao, L., Shen, H. (1998). Adsorbed resin phase spectrophotometric determination of vanillin or/and its derivatives. Talanta, 47, 1121-1127.
  • [10] Zhao, J., Xia, H., Yu, T., Jin, L., Li, X., Zhang, Y., Shu, L., Zeng, L., He, Z. (2018). A colorimetric assay for vanillin detection by determination of the luminescence of o-toluidine condensates. PLoS One, 13(4), e0194010, 1-11.
  • [11] Alpar, N., Yardım, Y., Sentürk, Z. (2018). Selective and simultaneous determination of total chlorogenic acids, vanillin and caffeine in foods and beverages by adsorptive stripping voltammetry using a cathodically pretreated boron-doped diamond electrode. Sensors and Actuators B, 257, 398-408.
  • [12] Durán, G.M., Llorent-Martínez, E.J., Contento, A.M., Ríos, Á. (2018). Determination of vanillin by using gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots and Nafion. Microchimica Acta, 185, 204-212.
  • [13] Karabiberoglu, S.U. Kocak, C.C. (2018). Voltammetric determination of vanillin in commercial food products using overoxidized poly(pyrrole) film-modified glassy carbon electrodes. Turkish Journal of Chemistry, 42, 291-305.
  • [14] Murtada, K., Jodeh, S., Zougagh, M., Rios, A. (2018). Development of an aluminum doped TiO2 nanoparticles-modified screen printed carbon electrode for electrochemical sensing of vanillin in food samples. Electroanalysis, 30, 969-974.
  • [15] Ning, J., He, Q., Luo, X., Wang, M., Liu, D., Wang, J., Liu, J., Li, G. (2018). Rapid and sensitive determination of vanillin based on a glassy carbon electrode modified with Cu2O-electrochemically reduced graphene oxide nanocomposite film. Sensors, 18, 2762 (17 pages)
  • [16] Cheraghi, S., Taher, M.A., Karimi-Maleh, H. (2017). Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. Journal of Food Composition and Analysis, 62, 254-259.
  • [17] Sivakumar, M., Sakthivel, M., Chen, S.M. (2017). Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples. Journal of Colloid Interface Science, 490, 719-726.
  • [18] Wu, W., Yang, L., Zhao, F., Zeng, B. (2017). A vanillin electrochemical sensor based on molecularly imprinted poly(1-vinyl-3-octylimidazole hexafluoride phosphorus)−multi-walled carbon nanotubes@polydopamine–carboxylsingle-walled carbon nanotubes composite. Sensors and Actuators B, 239,481-487.
  • [19] Abbasghorbani, M. (2017). Electrochemical determination of vanillin in food samples using MgO/SWCNTs-ionic liquid modified electrode. International Journal of Electrochemical Science, 12, 11656-11665.
  • [20] Deng, P., Xu, Z., Zeng, R., Ding, C. (2015). Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene–polyvinylpyrrolidone composite film. Food Chemistry, 180, 156-163.
  • [21] Silva, T.R., Brondani, D., Zapp, E., Vieira, I.C. (2015). Electrochemical sensor based on gold nanoparticles stabilized in poly(allylamine hydrochloride) for determination of vanillin. Electroanalysis, 27, 465-472.
  • [22] Wang, X., Luo, C., Li L., Duan, H. (2015). An ultrasensitive molecularly imprinted electrochemical sensor based on graphene oxide/carboxylated multiwalled carbon nanotube/ionic liquid/gold nanoparticle composites for vanillin analysis. RSC Advances, 5, 92932-92939.
  • [23] Shang, L., Zhao, F., Zeng, B. (2014). Sensitive voltammetric determination of vanillin with an AuPd nanoparticles-graphene composite modified electrode. Food Chemistry, 151, 53-57.
  • [24] Zhao, Y., Du, Y., Lu, D., Wang, L., Ma, D., Ju, T., Wu, M. (2014). Sensitive determination of vanillin based on an arginine functionalized graphene film. Analytical Methods, 6, 1753-1758.
  • [25] Zheng, D., Hu, C., Gan, T., Dang, X., Hu, S. (2010). Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sensors and Actuators B, 148, 247-252.
  • [26] Bettazzi, F., Palchetti, I., Sisalli, S., Mascini, M. (2006). A disposable electrochemical sensor for vanillin detection. Analytica Chimica Acta, 555, 134-138.
  • [27] Dilgin D.G., Karakaya, S. (2016). Differential pulse voltammetric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode. Materials Science and Engineering: C, 63, 570-576.
  • [28] Dilgin, D.G., Ertek, B., Dilgin, Y. (2018). A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene blue-modified pencil graphite electrode. Journal of the Iranian Chemical Society, 15(6), 1355-1363.
  • [29] Dilgin, D.G. (2018). Determination of calcium dobesilate by differential pulse voltammetry at a disposable pencil graphite electrode. Analytical Letters, 51(1-2), 186-197.
  • [30] Özcan, A., Gürbüz, M., Özcan, A.A. (2018). Preparation of a disposable and low-cost electrochemical sensor for propham detection based on over-oxidized poly(thiophene) modified pencil graphite electrode. Talanta, 187, 125-132.
  • [31] Baig, N., Rana, A., Kawde, A.N. (2018). Modified electrodes for selective voltammetric detection of biomolecules. Electroanalysis, 30, 2551-2574.
  • [32] Torrinha, A., Amorim, C.G., Montenegro, M., Araujo, A.N. (2018). Biosensing based on pencil graphite electrodes. Talanta, 190, 235-247.
  • [33] Wang, J., Kawde, A.N., Sahlin, E. (2000). Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst, 125, 5-7.
  • [34] Ainscough, E.W., Brodie, A.M. (1990). The determination of vanillin in vanilla extract. Journal of Chemical Education, 67(12), 1070-1071.

Voltammetric Determination of Vanillin Using a Pretreated Pencil Graphite Electrode

Year 2019, Volume: 17 Issue: 1, 1 - 8, 26.03.2019
https://doi.org/10.24323/akademik-gida.543981

Abstract

In this study, a sensitive voltammetric method
for the determination of vanillin in commercial food products was proposed
using a pencil lead as an electrode material. In the cyclic voltammograms of
vanillin recorded in pH 8.0 Britton Robinson buffer at the pre-oxidized pencil graphite
electrode (p-PGE), a sharp peak was observed at about 520 mV (vs. Ag / AgCl
electrode) attributed to the oxidation of vanillin. Subsequently, the
voltammetric determination of vanillin based on its oxidation at p-PGE was
carried out using the differential pulse voltammetry (DPV) technique under
optimized conditions. DPV results showed that the oxidation peak current of
vanillin increased linearly in the concentration range of 0.5 to 10.0 µM
vanillin with a detection limit of 0.16 µM (based on 3Sb). In the final
step, this voltammetric method was applied to the determination of vanillin in
vanilla syrup samples. Results were in good agreement with the values indicated
on the labels of samples.

References

  • [1] Sinha, A.K., Sharma, U.K., Sharma, N. (2008). A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents. International Journal of Food Sciences and Nutrition, 59(4), 299-326.
  • [2] Bezerra, D.P., Soares, A.K.N., De Sousa, D.P. (2016). Overview of the role of vanillin on redox status and cancer development. Oxidative Medicine and Cellular Longevity 2016, Article ID 9734816, 9 pages.
  • [3] Rasoamandrary, N., Fernandes, A.M., Bashari, M., Masamba, K., Xuemin, X. (2013). Improved extraction of vanillin 4-hydroxy-3-methoxybenzaldehyde from cured vanilla beans using ultrasound-assisted extraction: A comparison of ultrasound-assisted and hot water bath extraction. Akademik Gıda, 11(1), 6-12.
  • [4] Rao, S.R., Ravishankar, G.A. (2000). Vanilla flavour: production by conventional and biotechnological routes. Journal of the Science of Food and Agriculture, 80, 289-304.
  • [5] Sinha, A.K., Verma, S.C., Sharma, U.K. (2007). Development and validation of an RP‐HPLC method for quantitative determination of vanillin and related phenolic compounds in Vanilla planifolia. Journal of Separation Science, 30, 15-20.
  • [6] De Jager, L.S., Perfetti, G.A., Diachenko, G.W. (2008). Comparison of headspace-SPME-GC–MS and LC–MS for the detection and quantification of coumarin, vanillin, and ethyl vanillin in vanilla extract products. Food Chemistry, 107, 1701-1709.
  • [7] Wang, Z., Zeng, G., Wei, X., Ding, B., Huang, C., Xu, B. (2016). Determination of vanillin and ethyl-vanillin in milk powder by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Food Analytical Methods, 9, 3360-3366.
  • [8] Santos, I.C., Smuts, J., Schug, K.A. (2017). Rapid profiling and authentication of vanilla extracts using gas chromatography-vacuum ultraviolet spectroscopy. Food Analytical Methods, 10, 4068-4078.
  • [9] Li, R., Jiang, Z., Mao, L., Shen, H. (1998). Adsorbed resin phase spectrophotometric determination of vanillin or/and its derivatives. Talanta, 47, 1121-1127.
  • [10] Zhao, J., Xia, H., Yu, T., Jin, L., Li, X., Zhang, Y., Shu, L., Zeng, L., He, Z. (2018). A colorimetric assay for vanillin detection by determination of the luminescence of o-toluidine condensates. PLoS One, 13(4), e0194010, 1-11.
  • [11] Alpar, N., Yardım, Y., Sentürk, Z. (2018). Selective and simultaneous determination of total chlorogenic acids, vanillin and caffeine in foods and beverages by adsorptive stripping voltammetry using a cathodically pretreated boron-doped diamond electrode. Sensors and Actuators B, 257, 398-408.
  • [12] Durán, G.M., Llorent-Martínez, E.J., Contento, A.M., Ríos, Á. (2018). Determination of vanillin by using gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots and Nafion. Microchimica Acta, 185, 204-212.
  • [13] Karabiberoglu, S.U. Kocak, C.C. (2018). Voltammetric determination of vanillin in commercial food products using overoxidized poly(pyrrole) film-modified glassy carbon electrodes. Turkish Journal of Chemistry, 42, 291-305.
  • [14] Murtada, K., Jodeh, S., Zougagh, M., Rios, A. (2018). Development of an aluminum doped TiO2 nanoparticles-modified screen printed carbon electrode for electrochemical sensing of vanillin in food samples. Electroanalysis, 30, 969-974.
  • [15] Ning, J., He, Q., Luo, X., Wang, M., Liu, D., Wang, J., Liu, J., Li, G. (2018). Rapid and sensitive determination of vanillin based on a glassy carbon electrode modified with Cu2O-electrochemically reduced graphene oxide nanocomposite film. Sensors, 18, 2762 (17 pages)
  • [16] Cheraghi, S., Taher, M.A., Karimi-Maleh, H. (2017). Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. Journal of Food Composition and Analysis, 62, 254-259.
  • [17] Sivakumar, M., Sakthivel, M., Chen, S.M. (2017). Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples. Journal of Colloid Interface Science, 490, 719-726.
  • [18] Wu, W., Yang, L., Zhao, F., Zeng, B. (2017). A vanillin electrochemical sensor based on molecularly imprinted poly(1-vinyl-3-octylimidazole hexafluoride phosphorus)−multi-walled carbon nanotubes@polydopamine–carboxylsingle-walled carbon nanotubes composite. Sensors and Actuators B, 239,481-487.
  • [19] Abbasghorbani, M. (2017). Electrochemical determination of vanillin in food samples using MgO/SWCNTs-ionic liquid modified electrode. International Journal of Electrochemical Science, 12, 11656-11665.
  • [20] Deng, P., Xu, Z., Zeng, R., Ding, C. (2015). Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene–polyvinylpyrrolidone composite film. Food Chemistry, 180, 156-163.
  • [21] Silva, T.R., Brondani, D., Zapp, E., Vieira, I.C. (2015). Electrochemical sensor based on gold nanoparticles stabilized in poly(allylamine hydrochloride) for determination of vanillin. Electroanalysis, 27, 465-472.
  • [22] Wang, X., Luo, C., Li L., Duan, H. (2015). An ultrasensitive molecularly imprinted electrochemical sensor based on graphene oxide/carboxylated multiwalled carbon nanotube/ionic liquid/gold nanoparticle composites for vanillin analysis. RSC Advances, 5, 92932-92939.
  • [23] Shang, L., Zhao, F., Zeng, B. (2014). Sensitive voltammetric determination of vanillin with an AuPd nanoparticles-graphene composite modified electrode. Food Chemistry, 151, 53-57.
  • [24] Zhao, Y., Du, Y., Lu, D., Wang, L., Ma, D., Ju, T., Wu, M. (2014). Sensitive determination of vanillin based on an arginine functionalized graphene film. Analytical Methods, 6, 1753-1758.
  • [25] Zheng, D., Hu, C., Gan, T., Dang, X., Hu, S. (2010). Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sensors and Actuators B, 148, 247-252.
  • [26] Bettazzi, F., Palchetti, I., Sisalli, S., Mascini, M. (2006). A disposable electrochemical sensor for vanillin detection. Analytica Chimica Acta, 555, 134-138.
  • [27] Dilgin D.G., Karakaya, S. (2016). Differential pulse voltammetric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode. Materials Science and Engineering: C, 63, 570-576.
  • [28] Dilgin, D.G., Ertek, B., Dilgin, Y. (2018). A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene blue-modified pencil graphite electrode. Journal of the Iranian Chemical Society, 15(6), 1355-1363.
  • [29] Dilgin, D.G. (2018). Determination of calcium dobesilate by differential pulse voltammetry at a disposable pencil graphite electrode. Analytical Letters, 51(1-2), 186-197.
  • [30] Özcan, A., Gürbüz, M., Özcan, A.A. (2018). Preparation of a disposable and low-cost electrochemical sensor for propham detection based on over-oxidized poly(thiophene) modified pencil graphite electrode. Talanta, 187, 125-132.
  • [31] Baig, N., Rana, A., Kawde, A.N. (2018). Modified electrodes for selective voltammetric detection of biomolecules. Electroanalysis, 30, 2551-2574.
  • [32] Torrinha, A., Amorim, C.G., Montenegro, M., Araujo, A.N. (2018). Biosensing based on pencil graphite electrodes. Talanta, 190, 235-247.
  • [33] Wang, J., Kawde, A.N., Sahlin, E. (2000). Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst, 125, 5-7.
  • [34] Ainscough, E.W., Brodie, A.M. (1990). The determination of vanillin in vanilla extract. Journal of Chemical Education, 67(12), 1070-1071.
There are 34 citations in total.

Details

Primary Language English
Journal Section Research Papers
Authors

Didem Giray Dilgin 0000-0002-3487-3470

Publication Date March 26, 2019
Submission Date February 21, 2019
Published in Issue Year 2019 Volume: 17 Issue: 1

Cite

APA Giray Dilgin, D. (2019). Voltammetric Determination of Vanillin Using a Pretreated Pencil Graphite Electrode. Akademik Gıda, 17(1), 1-8. https://doi.org/10.24323/akademik-gida.543981
AMA Giray Dilgin D. Voltammetric Determination of Vanillin Using a Pretreated Pencil Graphite Electrode. Akademik Gıda. March 2019;17(1):1-8. doi:10.24323/akademik-gida.543981
Chicago Giray Dilgin, Didem. “Voltammetric Determination of Vanillin Using a Pretreated Pencil Graphite Electrode”. Akademik Gıda 17, no. 1 (March 2019): 1-8. https://doi.org/10.24323/akademik-gida.543981.
EndNote Giray Dilgin D (March 1, 2019) Voltammetric Determination of Vanillin Using a Pretreated Pencil Graphite Electrode. Akademik Gıda 17 1 1–8.
IEEE D. Giray Dilgin, “Voltammetric Determination of Vanillin Using a Pretreated Pencil Graphite Electrode”, Akademik Gıda, vol. 17, no. 1, pp. 1–8, 2019, doi: 10.24323/akademik-gida.543981.
ISNAD Giray Dilgin, Didem. “Voltammetric Determination of Vanillin Using a Pretreated Pencil Graphite Electrode”. Akademik Gıda 17/1 (March 2019), 1-8. https://doi.org/10.24323/akademik-gida.543981.
JAMA Giray Dilgin D. Voltammetric Determination of Vanillin Using a Pretreated Pencil Graphite Electrode. Akademik Gıda. 2019;17:1–8.
MLA Giray Dilgin, Didem. “Voltammetric Determination of Vanillin Using a Pretreated Pencil Graphite Electrode”. Akademik Gıda, vol. 17, no. 1, 2019, pp. 1-8, doi:10.24323/akademik-gida.543981.
Vancouver Giray Dilgin D. Voltammetric Determination of Vanillin Using a Pretreated Pencil Graphite Electrode. Akademik Gıda. 2019;17(1):1-8.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).