Review
BibTex RIS Cite

Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları

Year 2019, Volume: 17 Issue: 1, 140 - 148, 26.03.2019
https://doi.org/10.24323/akademik-gida.544980

Abstract

Selüloz
nanokristalleri 5-70 nm çapında, 100 nm ile birkaç mikrometre boyutunda, kristallik
derecesi yüksek, çubuk şeklinde parçacıklar olup, lignoselülozik hammadde
kaynaklarından elde edilmektedir. Son yıllarda selüloz nanokristallerinin
eldesinde, tarım ürünlerinin işlenmesi sırasında ortaya çıkan kök, sap, saman,
yaprak ve kabuk vb. atıkların lignoselülozik hammadde kaynağı olarak
kullanımının ekonomik ve çevresel nedenlerden dolayı hız kazandığı
görülmektedir. Mısır koçanı, şeker kamışı küspesi, pirinç ve buğday samanı vb.
tarımsal atıklardan selüloz nanokristallerinin eldesi; (i) ön işlemler-yıkama,
öğütme (ii) saflaştırma (hemiselüloz ve ligninin uzaklaştırılması) ve saf
selüloz liflerinin eldesi, (iii) kimyasallarla muamele-asit hidrolizi olmak
üzere üç temel adımda gerçekleştirilmektedir. Selüloz nanokristallerin karakteristik
özelliklerinin elde edildiği bitkinin türüne, ekstraksiyon koşullarına bağlı
olarak değiştiği bilinmektedir. Selüloz nanokristalleri kompozit malzemelerin
üretiminde sentetik takviye ajanlarına alternatif, malzemenin mekaniksel ve
bariyer özelliklerinin geliştirilmesine katkı sağlayan, doğada kendiliğinden
bozunan, yenilenebilir bir malzemedir. Bu nedenle gıda ambalaj sektörü,
otomotiv ve ilaçbilim başta olmak üzere, endüstrinin birçok dalındaki
uygulamalar için sürdürülebilir ve çevre dostu bir malzeme olarak hizmet eder. Bu
makalede; tarımsal ürünlerden selüloz nanokristallerinin eldesi, hammadde
kaynağının karakterizasyon özelliklerine etkisi ve uygulamalarının incelendiği
çalışmalar incelenmiştir.

References

  • [1] Anonim. (2017). Biyokütle Potansiyeli Olarak Tarımsal Atıklar. http://biyoder.org.tr/?page_num=4589 (Son erişim tarihi; 11.02.2018).
  • [2] Ertuğrul, B., Güler, T. (2014). Biyokütle enerjisi potansiyelimiz. Sakarya Ticaret Borsası, 49, 10-11.
  • [3] Baran, A., Çaycı, G. ve İnal, A. (1995). Farklı tarımsal atıkların bazı fiziksel ve kimyasal özellikleri. Pamukkale Üniversitesi Mühendislik Fakültesi Mühendislik Bilimleri Dergisi, 1(2-3), 169-172.
  • [4] Bahçegül, E. (2011). Tarımsal atıkların çevre dostu plastiklere dönüşümü. Bilim ve Teknik, 521, 68-74.
  • [5] Huang, C., Han., L., Liu, X., Ma, L. (2011). The rapid estimation of cellulose, hemicellulose, and lignin contentsin rice straw by near infrared spectroscopy. Energy Sources, 33, 114–120.
  • [6] Sun, J.X., Sun, X.F., Zhao, H., Sun, R.C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84, 331-339.
  • [7] Balea, A., Meroya, N., Fuente, E., Delgado-Aguilar, M., Mutje, P., Blonco, A., Negro, C. (2016). Valorization of corn stalk by the production of cellulose nanofibers to improve recycled paper properties. BioResources, 11(2), 3416-343.
  • [8] El-TayebI, T.S., AbdelhafezI, A.A., Ali, S.H., Ramadan, E.M. (2012). Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production. Brazilian Journal of Microbiology, 1523-1525.
  • [9] Liu, R., Huang, Y. (2005). Structure and morphology of cellulose in wheat straw. Cellulose, 12, 25-34.
  • [10] Li, L., Zhao, L.. (2015). Nature cellulose fibre extracted from different cotton stalk sections by degumming. Fibres & Textiles in Eastern Europe, 23(6): 37-40.
  • [11] Kopania, E., Wietecha, J., Cienchaska, D. (2012). Studies on ısolation of cellulose fibres from waste plant biomass. Fibres & Textiles in Eastern, 20(96), 167-172.
  • [12] Zhou, L., He, H., Jiang, C., Ma, L., Yu, P. (2014). Cellulose nanocrystals from cotton stalk for reinforcement of poly(vinyl alcohol) composites. Cellulose Chemistry and Technology, 51(1-2), 109-119.
  • [13] Iwatake, A., Nogi, M., Yano, H. (2008). Cellulose nanofiber-reinforced polylactic acid. Compos. Sci. Technol. 68(9), 2103-2106.
  • [14] Lu, J., Askeland, P., Drzal, L.T. (2008). Surface modification of microfibrillated cellulose for epoxycomposite applications. Polymer, 49, 1285-1298.
  • [15] Klemm, D., Heublein, B., Fink, H.P., Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44, 3358-93.
  • [16] Johar, N., Ahmad, I., Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37(1), 93–99.
  • [17] Lu, P., Xiao, H., Zhang, W.,Gong, G. (2014). Reactive coating of soybean oil-based polymer on nanofibrillated cellulose film for water vapor barrier packaging. Carbohydrate Polymers, 111, 524–529.
  • [18] Liu, S., Yu, T., Wu, Y., Li, W., Li, B. (2014). Evolution of cellulose into flexible conductive green electronics: A smart strategy to fabricate sustainable electrodes for supercapacitors. RSC Advances, 4(64), 34134–34143.
  • [19] Stenstad, P., Andresen, M., Tanem, B.S., Stenius, P. (2008). Chemical surface modifications of microfibrillated cellulose. Cellulose, 15, 35-45.
  • [20] Siqueira, G., Bras, J., Dufres, A. (2010). Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers, 2, 728-765.
  • [21] Tozluoğlu, A., Çöpür, Y., Özyürek, Ö., Çıtlak, S. (2015). Nanoselüloz üretim teknolojisi. Turkish Journal of Forestry, 16(2), 203-219.
  • [22] Ng, H.M., Sin, L.T., Tee, T.T., Bee, S.T., Hui, D., Low, C.Y., Rahmat, A.R. (2015). Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composite, 75, 176-200.
  • [23] Kurtuluş, M. (2010). Lignoselülozik materyallerden termokatalitik işlemle suda çözündürülen polisakkaritlerin moleküler yapılarının incelenmesi. Çukurova Üniversitesi Yüksek Lisans Tezi, Adana, 104 s.
  • [24] Hon, D.N.S., Shiraishi, N. (2001). Wood and cellulose chemistry, Marcel Dekker, New York and Basel.
  • [25] Anwar, Z., Gulfraz, M., Irshad, M. 2014. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences, 7, 163-173.
  • [26] Bulut, Y., Erdoğan, Ü.H. (2011). Selüloz esaslı doğal liflerin kompozit üretiminde takviye materyali olarak kullanımı. The Journal of Textiles and Engineers, 82, 26-35.
  • [27] Adıgüzel, A.O. (2013). Lignoselülozik materyallerden biyoetanol üretimi için kullanılan ön-muamele ve hidroliz yöntemleri. Sakarya Üniversitesi Fen Bilimleri Dergisi, 17(3), 381-397.
  • [28] Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., Davoodi, R. (2015). Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose, 22, 935–969.
  • [29] Nascimento, P., Marim, R., Carvalho, G., Mali, S. (2016). Nanocellulose produced from rice hulls and its effect on the properties of biodegradable starch films. Materials Research, 19(1), 167-174.
  • [30] Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40, 3941–3994.
  • [31] Hua, K. (2015). Nanocellulose for Biomedical Applications. Modification, Characterisation and Biocompatibility Studies. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1320. 80 pp. Uppsala: Acta Universitatis Upsaliensis.
  • [32] Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J. L., Heux, L., Dubreuil, F., Rochas, C. (2008). The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 9(1), 57–65.
  • [33] Csiszar, E., Nagy, S. (2017). A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers. Carbohydrate Polymers, 174, 740–749.
  • [34] Cavaille, J.Y., Ruiz, M.M., Dufresne, A., Gerard, J.F., Graillat, C. (2000). Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos Interface, 7, 117–131.
  • [35] Brinchi, L., Cotana, F., Fortunati, E., Kenny, J.M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydrate Polymers, 94(1), 154-169.
  • [36] Saxena, I.M., Brown, R.M.J. (2005). Cellulose biosynthesis: current views and envolving concepts. Ann. Bot. 96, 9-21.
  • [37] De Souza Lima, M.M., Borsali, R. (2004). Rodlike cellulose microcrystals: Structure, properties and applications. Macromolecular Rapid Communications, 25, 771-787.
  • [38] Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C. (2010). Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81, 83-92.
  • [39] Frone, A.N., Panaitescu, D.M., Donescu, D., Spataru, C.I., Radovici, C., Trusca, R. (2011). Preparation and characterization of PVA composites with cellulose nano-fibers obtained by ultrasonication. BioResources, 6(1), 487-512.
  • [40] Sundari, M.T., Ramesh, A. (2012). Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth-Eichhornia crassipes. Carbohydrate Polymers, 87, 1701-1705.
  • [41] Liu, C.F., Sun, R.C. (2010). Cellulose. In: Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels (edited by R.C. Sun). Amsterdam, the Netherland: Elsevier, 131–167p.
  • [42] Cherian, B.M., Leao, A.L., de Souza, S.F., Thomas, S., Pothan, L.A., Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81, 720–725.
  • [43] Habibi, Y., Lucia, L.A., Rojas, O.J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110, 3479-3500.
  • [44] Dungani, R., Karina, M., Subyakto, A., Hermawan, D., Haydiyana, A. (2016). Agricultural waste fibers towards sustainability and advanced utilization: a review. Asian Journal of Plant Sciences, 15(1-2), 42-55.
  • [45] Kumar, A., Negi, Y.S., Choudhary, V., Bhardwaj, N.K. (2014). Sugarcane bagasse: characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2(1), 1-8.
  • [46] Lu, P., Hsieh, Y. (2012). Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers, 87, 564–573.
  • [47] Magalhaes, W.L.E., Cao, X., Lucia, L.A. (2009). Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies. Langmuir, 25(22), 13250–13257.
  • [48] Peresin, M.S., Habibi, Y., Zoppe, J.O., Pawlak, J.J., Rojas, O.J. (2010). Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: Manufacture and characterization. Biomacromolecules, 11(3), 674–681.
  • [49] Zoppe, J.O., Peresin, M.S., Habibi, Y., Venditti, R.A., Rojas, O.J. (2009). Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals. ACS Applied Materials & Interfaces, 1(9), 1996–2004.
  • [50] Xu, K., Liu, C., Kang, K., Zheng, Z., Wang, S., Tang, Z., Yang, W. (2018). Isolation of nanocrystalline cellulose from rice straw and preparation of its biocomposites with chitosan: Physicochemical characterization and evaluation of interfacial compatibility. Composite Science and Technology, 154, 8-17.
  • [51] Agustin, M.B, Ahmmad, B., De Leon, E.R., Buenaobra, J.L., Salazar, J.R., Hiriso, F. (2013). Starch-based biocomposite films reinforced with cellulose nanocrystals from garlic stalks. Polymer Composites, 34(8), 1325-1332.
  • [52] Reddy, J.P., Rhim, J.W. (2014). Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480–488.
  • [53] Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., Miraki, R. (2013). Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. International Journal of Biological Macromolecules, 54, 166–173.
  • [54] Khan, A., Khan, R.A., Salmieri, S., Le Tien, C., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M.R., Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers, 90, 1601–1608.
  • [55] Chen, Y., Liu, C., Chang, P.R., Cao, X., Anderson, D.P. (2009). Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydrate Polymers, 76, 607–615.
  • [56] Cho, M.J., Park, B.D. (2011). Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. Journal of Industria and Engineering Chemistry, 17, 36–40.
  • [57] Silverio, H.A., Neto, W.P.F., Pasquini, D. (2013). Effect of ıncorporating cellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly(vinyl alcohol) nanocomposites. Journal of Nanomaterials,1-9.
  • [58] Azeredo, H.M.C., Miranda, K.W.E., Ribeiro, H., Rosa, M.F., Nascimento, D.M. (2012). Nanoreinforced alginate–acerola puree coatings on acerola fruits. Journal of Food Engineering, 113, 505–510.
  • [59] Dong, F., Li, S., Liu, Z., Zhu, K., Wang, X., Jin, C. (2015). Improvement of quality and shelf life of strawberry with nanocellulose/chitosan composite coatings. Bangladesh Journal of Botany, 44(5), 709-717.

Production of Cellulose Nanocrystals from Agricultural Waste, Their Characteristics and Application Areas

Year 2019, Volume: 17 Issue: 1, 140 - 148, 26.03.2019
https://doi.org/10.24323/akademik-gida.544980

Abstract

Cellulose nanocrystals (CNs)
are rod-shaped particles with a high degree of
crystallinity that can be measured from 100 nm up to several micrometers, and
can have a diameter of between 5 to 70 nm.
CNs can be obtained from lignocellulosic raw materials.
In recent years, agricultural wastes such as roots, stems, straw, leaf and skin
of agricultural products have been used as a lignocellulosic raw material
source for the production of
CNs. New sources have been significantly increased due to the economic and environmental
reasons. The production of
CNs from agricultural waste such as corn cob,
bagasse, rice and wheat straw, etc. is carried out mostly in three main steps:
(i) pretreatment – washing, milling, (ii) purification – the removal of
hemicellulose and lignin, and the isolation of pure cellulose fibers, and (iii)
chemical treatment (acid hydrolysis). The properties of CNs vary depending on
their source and extraction conditions.
CNs are edible and self-degradable, and can be used
as an alternative to synthetic reinforcing agents in the production of
composite materials, while also contributing to the improvement of the
mechanical and barrier properties of materials. Therefore, they can be served
as a sustainable and environmentally friendly material for various applications
in a large number of industrial areas such as food packaging, automobile and
pharmaceuticals. In this article, the production of
CNs from agricultural products, the effect of raw
material sources on the properties of
CNs and their applications in different areas are investigated.

References

  • [1] Anonim. (2017). Biyokütle Potansiyeli Olarak Tarımsal Atıklar. http://biyoder.org.tr/?page_num=4589 (Son erişim tarihi; 11.02.2018).
  • [2] Ertuğrul, B., Güler, T. (2014). Biyokütle enerjisi potansiyelimiz. Sakarya Ticaret Borsası, 49, 10-11.
  • [3] Baran, A., Çaycı, G. ve İnal, A. (1995). Farklı tarımsal atıkların bazı fiziksel ve kimyasal özellikleri. Pamukkale Üniversitesi Mühendislik Fakültesi Mühendislik Bilimleri Dergisi, 1(2-3), 169-172.
  • [4] Bahçegül, E. (2011). Tarımsal atıkların çevre dostu plastiklere dönüşümü. Bilim ve Teknik, 521, 68-74.
  • [5] Huang, C., Han., L., Liu, X., Ma, L. (2011). The rapid estimation of cellulose, hemicellulose, and lignin contentsin rice straw by near infrared spectroscopy. Energy Sources, 33, 114–120.
  • [6] Sun, J.X., Sun, X.F., Zhao, H., Sun, R.C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84, 331-339.
  • [7] Balea, A., Meroya, N., Fuente, E., Delgado-Aguilar, M., Mutje, P., Blonco, A., Negro, C. (2016). Valorization of corn stalk by the production of cellulose nanofibers to improve recycled paper properties. BioResources, 11(2), 3416-343.
  • [8] El-TayebI, T.S., AbdelhafezI, A.A., Ali, S.H., Ramadan, E.M. (2012). Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production. Brazilian Journal of Microbiology, 1523-1525.
  • [9] Liu, R., Huang, Y. (2005). Structure and morphology of cellulose in wheat straw. Cellulose, 12, 25-34.
  • [10] Li, L., Zhao, L.. (2015). Nature cellulose fibre extracted from different cotton stalk sections by degumming. Fibres & Textiles in Eastern Europe, 23(6): 37-40.
  • [11] Kopania, E., Wietecha, J., Cienchaska, D. (2012). Studies on ısolation of cellulose fibres from waste plant biomass. Fibres & Textiles in Eastern, 20(96), 167-172.
  • [12] Zhou, L., He, H., Jiang, C., Ma, L., Yu, P. (2014). Cellulose nanocrystals from cotton stalk for reinforcement of poly(vinyl alcohol) composites. Cellulose Chemistry and Technology, 51(1-2), 109-119.
  • [13] Iwatake, A., Nogi, M., Yano, H. (2008). Cellulose nanofiber-reinforced polylactic acid. Compos. Sci. Technol. 68(9), 2103-2106.
  • [14] Lu, J., Askeland, P., Drzal, L.T. (2008). Surface modification of microfibrillated cellulose for epoxycomposite applications. Polymer, 49, 1285-1298.
  • [15] Klemm, D., Heublein, B., Fink, H.P., Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44, 3358-93.
  • [16] Johar, N., Ahmad, I., Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37(1), 93–99.
  • [17] Lu, P., Xiao, H., Zhang, W.,Gong, G. (2014). Reactive coating of soybean oil-based polymer on nanofibrillated cellulose film for water vapor barrier packaging. Carbohydrate Polymers, 111, 524–529.
  • [18] Liu, S., Yu, T., Wu, Y., Li, W., Li, B. (2014). Evolution of cellulose into flexible conductive green electronics: A smart strategy to fabricate sustainable electrodes for supercapacitors. RSC Advances, 4(64), 34134–34143.
  • [19] Stenstad, P., Andresen, M., Tanem, B.S., Stenius, P. (2008). Chemical surface modifications of microfibrillated cellulose. Cellulose, 15, 35-45.
  • [20] Siqueira, G., Bras, J., Dufres, A. (2010). Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers, 2, 728-765.
  • [21] Tozluoğlu, A., Çöpür, Y., Özyürek, Ö., Çıtlak, S. (2015). Nanoselüloz üretim teknolojisi. Turkish Journal of Forestry, 16(2), 203-219.
  • [22] Ng, H.M., Sin, L.T., Tee, T.T., Bee, S.T., Hui, D., Low, C.Y., Rahmat, A.R. (2015). Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composite, 75, 176-200.
  • [23] Kurtuluş, M. (2010). Lignoselülozik materyallerden termokatalitik işlemle suda çözündürülen polisakkaritlerin moleküler yapılarının incelenmesi. Çukurova Üniversitesi Yüksek Lisans Tezi, Adana, 104 s.
  • [24] Hon, D.N.S., Shiraishi, N. (2001). Wood and cellulose chemistry, Marcel Dekker, New York and Basel.
  • [25] Anwar, Z., Gulfraz, M., Irshad, M. 2014. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences, 7, 163-173.
  • [26] Bulut, Y., Erdoğan, Ü.H. (2011). Selüloz esaslı doğal liflerin kompozit üretiminde takviye materyali olarak kullanımı. The Journal of Textiles and Engineers, 82, 26-35.
  • [27] Adıgüzel, A.O. (2013). Lignoselülozik materyallerden biyoetanol üretimi için kullanılan ön-muamele ve hidroliz yöntemleri. Sakarya Üniversitesi Fen Bilimleri Dergisi, 17(3), 381-397.
  • [28] Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., Davoodi, R. (2015). Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose, 22, 935–969.
  • [29] Nascimento, P., Marim, R., Carvalho, G., Mali, S. (2016). Nanocellulose produced from rice hulls and its effect on the properties of biodegradable starch films. Materials Research, 19(1), 167-174.
  • [30] Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40, 3941–3994.
  • [31] Hua, K. (2015). Nanocellulose for Biomedical Applications. Modification, Characterisation and Biocompatibility Studies. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1320. 80 pp. Uppsala: Acta Universitatis Upsaliensis.
  • [32] Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J. L., Heux, L., Dubreuil, F., Rochas, C. (2008). The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 9(1), 57–65.
  • [33] Csiszar, E., Nagy, S. (2017). A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers. Carbohydrate Polymers, 174, 740–749.
  • [34] Cavaille, J.Y., Ruiz, M.M., Dufresne, A., Gerard, J.F., Graillat, C. (2000). Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos Interface, 7, 117–131.
  • [35] Brinchi, L., Cotana, F., Fortunati, E., Kenny, J.M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydrate Polymers, 94(1), 154-169.
  • [36] Saxena, I.M., Brown, R.M.J. (2005). Cellulose biosynthesis: current views and envolving concepts. Ann. Bot. 96, 9-21.
  • [37] De Souza Lima, M.M., Borsali, R. (2004). Rodlike cellulose microcrystals: Structure, properties and applications. Macromolecular Rapid Communications, 25, 771-787.
  • [38] Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C. (2010). Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81, 83-92.
  • [39] Frone, A.N., Panaitescu, D.M., Donescu, D., Spataru, C.I., Radovici, C., Trusca, R. (2011). Preparation and characterization of PVA composites with cellulose nano-fibers obtained by ultrasonication. BioResources, 6(1), 487-512.
  • [40] Sundari, M.T., Ramesh, A. (2012). Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth-Eichhornia crassipes. Carbohydrate Polymers, 87, 1701-1705.
  • [41] Liu, C.F., Sun, R.C. (2010). Cellulose. In: Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels (edited by R.C. Sun). Amsterdam, the Netherland: Elsevier, 131–167p.
  • [42] Cherian, B.M., Leao, A.L., de Souza, S.F., Thomas, S., Pothan, L.A., Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81, 720–725.
  • [43] Habibi, Y., Lucia, L.A., Rojas, O.J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110, 3479-3500.
  • [44] Dungani, R., Karina, M., Subyakto, A., Hermawan, D., Haydiyana, A. (2016). Agricultural waste fibers towards sustainability and advanced utilization: a review. Asian Journal of Plant Sciences, 15(1-2), 42-55.
  • [45] Kumar, A., Negi, Y.S., Choudhary, V., Bhardwaj, N.K. (2014). Sugarcane bagasse: characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2(1), 1-8.
  • [46] Lu, P., Hsieh, Y. (2012). Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers, 87, 564–573.
  • [47] Magalhaes, W.L.E., Cao, X., Lucia, L.A. (2009). Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies. Langmuir, 25(22), 13250–13257.
  • [48] Peresin, M.S., Habibi, Y., Zoppe, J.O., Pawlak, J.J., Rojas, O.J. (2010). Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: Manufacture and characterization. Biomacromolecules, 11(3), 674–681.
  • [49] Zoppe, J.O., Peresin, M.S., Habibi, Y., Venditti, R.A., Rojas, O.J. (2009). Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals. ACS Applied Materials & Interfaces, 1(9), 1996–2004.
  • [50] Xu, K., Liu, C., Kang, K., Zheng, Z., Wang, S., Tang, Z., Yang, W. (2018). Isolation of nanocrystalline cellulose from rice straw and preparation of its biocomposites with chitosan: Physicochemical characterization and evaluation of interfacial compatibility. Composite Science and Technology, 154, 8-17.
  • [51] Agustin, M.B, Ahmmad, B., De Leon, E.R., Buenaobra, J.L., Salazar, J.R., Hiriso, F. (2013). Starch-based biocomposite films reinforced with cellulose nanocrystals from garlic stalks. Polymer Composites, 34(8), 1325-1332.
  • [52] Reddy, J.P., Rhim, J.W. (2014). Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480–488.
  • [53] Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., Miraki, R. (2013). Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. International Journal of Biological Macromolecules, 54, 166–173.
  • [54] Khan, A., Khan, R.A., Salmieri, S., Le Tien, C., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M.R., Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers, 90, 1601–1608.
  • [55] Chen, Y., Liu, C., Chang, P.R., Cao, X., Anderson, D.P. (2009). Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydrate Polymers, 76, 607–615.
  • [56] Cho, M.J., Park, B.D. (2011). Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. Journal of Industria and Engineering Chemistry, 17, 36–40.
  • [57] Silverio, H.A., Neto, W.P.F., Pasquini, D. (2013). Effect of ıncorporating cellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly(vinyl alcohol) nanocomposites. Journal of Nanomaterials,1-9.
  • [58] Azeredo, H.M.C., Miranda, K.W.E., Ribeiro, H., Rosa, M.F., Nascimento, D.M. (2012). Nanoreinforced alginate–acerola puree coatings on acerola fruits. Journal of Food Engineering, 113, 505–510.
  • [59] Dong, F., Li, S., Liu, Z., Zhu, K., Wang, X., Jin, C. (2015). Improvement of quality and shelf life of strawberry with nanocellulose/chitosan composite coatings. Bangladesh Journal of Botany, 44(5), 709-717.
There are 59 citations in total.

Details

Primary Language Turkish
Journal Section Review Papers
Authors

Seda Bilek This is me 0000-0003-0475-4099

Arzu Yalçın Melikoğlu This is me 0000-0002-2762-4169

Serap Cesur This is me 0000-0001-6581-0854

Publication Date March 26, 2019
Submission Date February 14, 2018
Published in Issue Year 2019 Volume: 17 Issue: 1

Cite

APA Bilek, S., Yalçın Melikoğlu, A., & Cesur, S. (2019). Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları. Akademik Gıda, 17(1), 140-148. https://doi.org/10.24323/akademik-gida.544980
AMA Bilek S, Yalçın Melikoğlu A, Cesur S. Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları. Akademik Gıda. March 2019;17(1):140-148. doi:10.24323/akademik-gida.544980
Chicago Bilek, Seda, Arzu Yalçın Melikoğlu, and Serap Cesur. “Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri Ve Uygulama Alanları”. Akademik Gıda 17, no. 1 (March 2019): 140-48. https://doi.org/10.24323/akademik-gida.544980.
EndNote Bilek S, Yalçın Melikoğlu A, Cesur S (March 1, 2019) Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları. Akademik Gıda 17 1 140–148.
IEEE S. Bilek, A. Yalçın Melikoğlu, and S. Cesur, “Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları”, Akademik Gıda, vol. 17, no. 1, pp. 140–148, 2019, doi: 10.24323/akademik-gida.544980.
ISNAD Bilek, Seda et al. “Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri Ve Uygulama Alanları”. Akademik Gıda 17/1 (March 2019), 140-148. https://doi.org/10.24323/akademik-gida.544980.
JAMA Bilek S, Yalçın Melikoğlu A, Cesur S. Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları. Akademik Gıda. 2019;17:140–148.
MLA Bilek, Seda et al. “Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri Ve Uygulama Alanları”. Akademik Gıda, vol. 17, no. 1, 2019, pp. 140-8, doi:10.24323/akademik-gida.544980.
Vancouver Bilek S, Yalçın Melikoğlu A, Cesur S. Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları. Akademik Gıda. 2019;17(1):140-8.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).