Research Article
BibTex RIS Cite

Protein Oxidation in Meat and Meat Products: Its Importance, Mechanisms, Detection Methods and Effects on Quality

Year 2016, Volume: 14 Issue: 1, 54 - 60, 01.03.2016

Abstract

The effect of oxidized proteins on the development of biological diseases has been studied for a few decades but the effect and exact mechanisms of protein oxidation in food systems still remain largely unidentified. Protein oxidation has been defined as a covalent modification of proteins induced either directly by reactive species or indirectly by reactions with secondary by-products of oxidative stress. Meat and meat products are particularly susceptible to oxidative reactions. Oxidative modifications of proteins can change their physical and chemical properties, including their conformational structure, solubility, bioavailability and enzymatic activities. In this study, the mechanisms and consequences of protein oxidation in meat and meat products, its detection methods, its effects on meat quality, its possible effects on human health and its relationship with the meat processing stages are reviewed

References

  • Biesalski, H.K., 2002. Meat and cancer: Meat as a component of a healthy diet. European Journal of Clinical Nutrition 56(Suppl 1): 2-11.
  • Zhang, W., Xiao, S., Ahn, D.U., 2013. Protein oxidation: Basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition 53(11): 1191-201.
  • Berlett, B.S., Stadtman, E.R., 1997. Protein oxidation in aging, disease, and oxidative stress. The Journal of Biological Chemistry 272(33): 20313- 20316.
  • Xiong, Y.L., 2000. Protein Oxidation and Implications for Muscle Food Quality. Antioxidants in muscle foods: Nutritional strategies to improve quality, Edited by E, Decker, C, Faustman, and C. J., Lopez-Bote, John Wiley and Sons, New York, USA, 85-111.
  • Lund, M.N., Heinonen, M., Baron, C.P., Estévez, M., 2011. Protein oxidation in muscle foods: A review. Molecular Nutrition & Food Research 55(1): 83-95.
  • Soladoye, O.P., Juárez, M.L., Aalhus, J.L., Shand, P., Estévez, M., 2015. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Comprehensive Reviews in Food Science and Food Safety 14(2): 106-122.
  • Johnson, D.R., Decker, E.A., 2014. The role of oxygen in lipid oxidation reactions: A review. Annual Review of Food Science and Technology 6(1): 171- 190.
  • Martinaud, A., Mercier, Y., Marinova, P., Tassy, C., Gatellier, P., Renerre, M., 1997. Comparison of oxidative processes on myofibrillar proteins from beef during maturation and by different model oxidation systems. Journal of Agricultural and Food Chemistry 45(7): 2481-2487.
  • Davies, M.J. and Dean, R.T., 1997. Radical- Mediated Protein Oxidation: From Chemistry to Medicine, Oxford University Press, UK, 443 p.
  • Stadtman, E.R., 2001. Protein oxidation in aging and age-related diseases. Annals of the New York Academy of Sciences 928: 22-38.
  • Stadtman, E.R., 1993. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annual Review of Biochemistry 62: 797-821.
  • Headlam, H.A., Davies, M.J., 2004. Markers of protein oxidation: Different oxidants give rise to variable yields of bound and released carbonyl products. Free Radical Biology and Medicine 36(9): 1175-1184.
  • Carballal, S., Alvarez, B., Turell, L., Botti, H., Freeman, A.B., Radi, R., 2006. Sulfenic acid in human serum albumin. Amino Acids 32(4): 543-551.
  • DiMarco, T., Giulivi, C., 2007. Current analytical methods for the detection of dityrosine, a biomarker of oxidative stress, in biological samples. Mass Spectrometry Reviews 26(1): 108-120.
  • Pryor, W.A., Jin, X., Squadrito, G.L., 1994. One and two electron oxidations of methionine by peroxynitrite. Proceedings of the National Academy of Sciences of the United States of America. 91(November): 11173-11177.
  • Estévez, M., 2011. Protein carbonyls in meat systems: A review. Meat Science 89(3): 259-279.
  • Stadtman, E.R., Oliver, C.N., 1991. Metal-catalyzed oxidation of proteins. Physiological consequences. Journal of Biological Chemistry 266(4): 2005-2008.
  • Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel, S., Stadtman, E.R., 1990. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology 186: 464-478.
  • Shacter, E., 2000. Protein oxidative damage. Methods in Enzymology 319: 428-436.
  • Estévez, M., Ollilainen, V., Heinonen, M., 2009. Analysis of protein oxidation markers α-aminoadipic and γ-glutamic semialdehydes in food proteins using liquid chromatography (LC)-electrospray ionization spectrometry (MS). Journal of Agricultural and Food Chemistry 57(9): 3901-3910. tandem mass
  • Hawkins, C.L., Morgan, P.E., Davies M.J., 2009. Quantification of protein modification by oxidants. Free Radical Biology and Medicine 46(8): 965-988.
  • Heinonen, M., Reibn, D., Satue-Garcia, M.T., Huang, S., German, J.B., Frankel, E.N., 1998. Effect of protein on the antioxidant activity of phenolic compounds in a lecithin-liposome oxidation system. Journal of Agricultural and Food Chemistry 46(3): 917-922.
  • Stadtman, R.E., Levine, L.R., 2003. Free radical- mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25(3): 207- 218.
  • Estévez, M., Ventanas, S., Cava, R., 2007. Oxidation of lipids and proteins in frankfurters with different fatty acid compositions and tocopherol and phenolic contents. Food Chemistry 100(1): 55-63.
  • Meucci, E., Mordente, A., Martorana, G.E., 1991. Metal-catalyzed oxidation of human serum-albumin conformational and functional changes implications in protein aging. Journal of Biological Chemistry 266(8): 4692-4699.
  • Liu, G., Xiong, Y.L., 2000. Electrophoretic pattern, thermal denaturation, and in vitro digestibility of oxidized myosin. Journal of Agricultural and Food Chemistry 48:624–630
  • [27] Dalle-Donne, I., Giustarini, D., Colombo, R., Rossi, R., Milzani, A., 2003. Protein carbonylation in human diseases. Trends in Molecular Medicine 9(4): 169-176.
  • Sante-Lhoutellier, V., Aubry, L., Gatellier P., 2007. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. Journal of Agricultural and Food Chemistry 55(13): 5343-5348.
  • Wójciak, K.M., Dolatowski, Z.J., 2012. Oxidative stability of fermented meat products. Acta Scientiarum Polonorum, Technologia Alimentaria 11(2): 99-109.
  • Rhee, K.S., Ziprin, Y.A., 2001. Pro-oxidative effects of NaCl in microbial growth-controlled and uncontrolled beef and chicken. Meat Science 57(1): 105-112.
  • Estévez, M., Heinonen M., 2010. Effect of phenolic compounds on the formation of α-aminoadipic and γ-glutamic semialdehydes from myofibrillar proteins oxidized by copper, iron, and myoglobin. Journal of Agricultural and Food Chemistry 58(7): 4448-4455.
  • Skibsted, L.H., 2011. Nitric oxide and quality and safety of muscle based foods. Nitric Oxide 24(4): 176-183.
  • Utrera, M., Parra, V., Estévez, M., 2014. Protein oxidation during frozen storage and subsequent processing of different beef muscles. Meat Science 96(2): 812-820.
  • Utrera, M., Estévez, M., 2013. Oxidative damage to poultry, pork, and beef during frozen storage through the analysis of novel protein oxidation markers. Journal of Agricultural and Food Chemistry 61(33): 7987-7993.
  • Utrera, M., Morcuende, D., Estévez, M., 2014. Fat content has a significant impact on protein oxidation occurred during frozen storage of beef patties. LWT - Food Science and Technology 56(1): 62-68.
  • Estévez, M., Ventanas, S., Heinonen, M., Puolanne, E., 2011. Protein carbonylation and water-holding capacity of pork subjected to frozen storage: Effect of muscle type, premincing and packaging. Journal of Agricultural and Food Chemistry 59(10): 5435-5443.
  • Hoac, T., Daun, C., Trafikowska, U., Zackrisson, J., Åkesson, B., 2006. Influence of heat treatment on lipid oxidation and glutathione peroxidase activity in chicken and duck meat. Innovative Food Science and Emerging Technologies 7(1-2): 88-93.
  • Promeyrat, A., Le Louët, L., Kondjoyan, A., Astruc, T., Santé-Lhoutellier, V., Gatellier, P., Daudin, J.D., 2011. Combined effect of meat composition and heating parameters on the physicochemical state of proteins. Procedia Food Science 1(0): 1118-1125.
  • Cheah, P.B., Ledward, D.A., 1996. High pressure effects on lipid oxidation in minced pork. Meat Science 43(2): 123-134.
  • Jung, S., Nam, K.C., Ahn, D.U., Kim, H.J., Jo, C., 2013. Effect of phosvitin on lipid and protein oxidation in ground beef treated with high hydrostatic pressure. Meat Science 95(1): 8-13.
  • Giroux, M., Lacroix, M., 1998. Nutritional adequacy of irradiated meat - a review. Food Research International 31(4): 257-264.
  • Lund, M.N., Hviid, M.S., Skibsted L.H., 2007. The combined effect of antioxidants and modified atmosphere packaging on protein and lipid oxidation in beef patties during chill storage. Meat Science 76(2): 226-233.

Et ve Ürünlerinde Protein Oksidasyonu: Etki Mekanizması, Tespit Yöntemleri ve Etkileri

Year 2016, Volume: 14 Issue: 1, 54 - 60, 01.03.2016

Abstract

Biyolojik hastalıkların gelişimi üzerine okside proteinlerin etkileri medikal anlamda uzun yıllardır incelenmesine rağmen protein oksidasyonunun gıdalardaki etkileri ve etki mekanizmaları halen büyük ölçüde açıklığa kavuşturulmamıştır. Protein oksidasyonu, direkt olarak reaktif türlerle ya da dolaylı olarak ikincil oksidasyon ürünleri ile başlatılan kovalent protein modifikasyonu olarak tanımlanabilir. Et ve et ürünleri oksidatif reaksiyonlara karşı oldukça hassastırlar. Oksidatif modifikasyonlar sonucu proteinlerin fiziksel ve kimyasal özellikleri değişmekle birlikte, konformasyonel yapısı, çözünürlüğü, biyolojik yararlılığı, enzimatik aktiviteleri değişikliğe uğramaktadır. Bu derlemede protein oksidasyonunun mekanizması, tespit yöntemleri, et kalitesi ve sağlık üzerine etkileri ile et işlem basamaklarının protein oksidasyonu ile ilişkileri kısaca açıklanmaya çalışılmıştır

References

  • Biesalski, H.K., 2002. Meat and cancer: Meat as a component of a healthy diet. European Journal of Clinical Nutrition 56(Suppl 1): 2-11.
  • Zhang, W., Xiao, S., Ahn, D.U., 2013. Protein oxidation: Basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition 53(11): 1191-201.
  • Berlett, B.S., Stadtman, E.R., 1997. Protein oxidation in aging, disease, and oxidative stress. The Journal of Biological Chemistry 272(33): 20313- 20316.
  • Xiong, Y.L., 2000. Protein Oxidation and Implications for Muscle Food Quality. Antioxidants in muscle foods: Nutritional strategies to improve quality, Edited by E, Decker, C, Faustman, and C. J., Lopez-Bote, John Wiley and Sons, New York, USA, 85-111.
  • Lund, M.N., Heinonen, M., Baron, C.P., Estévez, M., 2011. Protein oxidation in muscle foods: A review. Molecular Nutrition & Food Research 55(1): 83-95.
  • Soladoye, O.P., Juárez, M.L., Aalhus, J.L., Shand, P., Estévez, M., 2015. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Comprehensive Reviews in Food Science and Food Safety 14(2): 106-122.
  • Johnson, D.R., Decker, E.A., 2014. The role of oxygen in lipid oxidation reactions: A review. Annual Review of Food Science and Technology 6(1): 171- 190.
  • Martinaud, A., Mercier, Y., Marinova, P., Tassy, C., Gatellier, P., Renerre, M., 1997. Comparison of oxidative processes on myofibrillar proteins from beef during maturation and by different model oxidation systems. Journal of Agricultural and Food Chemistry 45(7): 2481-2487.
  • Davies, M.J. and Dean, R.T., 1997. Radical- Mediated Protein Oxidation: From Chemistry to Medicine, Oxford University Press, UK, 443 p.
  • Stadtman, E.R., 2001. Protein oxidation in aging and age-related diseases. Annals of the New York Academy of Sciences 928: 22-38.
  • Stadtman, E.R., 1993. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annual Review of Biochemistry 62: 797-821.
  • Headlam, H.A., Davies, M.J., 2004. Markers of protein oxidation: Different oxidants give rise to variable yields of bound and released carbonyl products. Free Radical Biology and Medicine 36(9): 1175-1184.
  • Carballal, S., Alvarez, B., Turell, L., Botti, H., Freeman, A.B., Radi, R., 2006. Sulfenic acid in human serum albumin. Amino Acids 32(4): 543-551.
  • DiMarco, T., Giulivi, C., 2007. Current analytical methods for the detection of dityrosine, a biomarker of oxidative stress, in biological samples. Mass Spectrometry Reviews 26(1): 108-120.
  • Pryor, W.A., Jin, X., Squadrito, G.L., 1994. One and two electron oxidations of methionine by peroxynitrite. Proceedings of the National Academy of Sciences of the United States of America. 91(November): 11173-11177.
  • Estévez, M., 2011. Protein carbonyls in meat systems: A review. Meat Science 89(3): 259-279.
  • Stadtman, E.R., Oliver, C.N., 1991. Metal-catalyzed oxidation of proteins. Physiological consequences. Journal of Biological Chemistry 266(4): 2005-2008.
  • Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel, S., Stadtman, E.R., 1990. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology 186: 464-478.
  • Shacter, E., 2000. Protein oxidative damage. Methods in Enzymology 319: 428-436.
  • Estévez, M., Ollilainen, V., Heinonen, M., 2009. Analysis of protein oxidation markers α-aminoadipic and γ-glutamic semialdehydes in food proteins using liquid chromatography (LC)-electrospray ionization spectrometry (MS). Journal of Agricultural and Food Chemistry 57(9): 3901-3910. tandem mass
  • Hawkins, C.L., Morgan, P.E., Davies M.J., 2009. Quantification of protein modification by oxidants. Free Radical Biology and Medicine 46(8): 965-988.
  • Heinonen, M., Reibn, D., Satue-Garcia, M.T., Huang, S., German, J.B., Frankel, E.N., 1998. Effect of protein on the antioxidant activity of phenolic compounds in a lecithin-liposome oxidation system. Journal of Agricultural and Food Chemistry 46(3): 917-922.
  • Stadtman, R.E., Levine, L.R., 2003. Free radical- mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25(3): 207- 218.
  • Estévez, M., Ventanas, S., Cava, R., 2007. Oxidation of lipids and proteins in frankfurters with different fatty acid compositions and tocopherol and phenolic contents. Food Chemistry 100(1): 55-63.
  • Meucci, E., Mordente, A., Martorana, G.E., 1991. Metal-catalyzed oxidation of human serum-albumin conformational and functional changes implications in protein aging. Journal of Biological Chemistry 266(8): 4692-4699.
  • Liu, G., Xiong, Y.L., 2000. Electrophoretic pattern, thermal denaturation, and in vitro digestibility of oxidized myosin. Journal of Agricultural and Food Chemistry 48:624–630
  • [27] Dalle-Donne, I., Giustarini, D., Colombo, R., Rossi, R., Milzani, A., 2003. Protein carbonylation in human diseases. Trends in Molecular Medicine 9(4): 169-176.
  • Sante-Lhoutellier, V., Aubry, L., Gatellier P., 2007. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. Journal of Agricultural and Food Chemistry 55(13): 5343-5348.
  • Wójciak, K.M., Dolatowski, Z.J., 2012. Oxidative stability of fermented meat products. Acta Scientiarum Polonorum, Technologia Alimentaria 11(2): 99-109.
  • Rhee, K.S., Ziprin, Y.A., 2001. Pro-oxidative effects of NaCl in microbial growth-controlled and uncontrolled beef and chicken. Meat Science 57(1): 105-112.
  • Estévez, M., Heinonen M., 2010. Effect of phenolic compounds on the formation of α-aminoadipic and γ-glutamic semialdehydes from myofibrillar proteins oxidized by copper, iron, and myoglobin. Journal of Agricultural and Food Chemistry 58(7): 4448-4455.
  • Skibsted, L.H., 2011. Nitric oxide and quality and safety of muscle based foods. Nitric Oxide 24(4): 176-183.
  • Utrera, M., Parra, V., Estévez, M., 2014. Protein oxidation during frozen storage and subsequent processing of different beef muscles. Meat Science 96(2): 812-820.
  • Utrera, M., Estévez, M., 2013. Oxidative damage to poultry, pork, and beef during frozen storage through the analysis of novel protein oxidation markers. Journal of Agricultural and Food Chemistry 61(33): 7987-7993.
  • Utrera, M., Morcuende, D., Estévez, M., 2014. Fat content has a significant impact on protein oxidation occurred during frozen storage of beef patties. LWT - Food Science and Technology 56(1): 62-68.
  • Estévez, M., Ventanas, S., Heinonen, M., Puolanne, E., 2011. Protein carbonylation and water-holding capacity of pork subjected to frozen storage: Effect of muscle type, premincing and packaging. Journal of Agricultural and Food Chemistry 59(10): 5435-5443.
  • Hoac, T., Daun, C., Trafikowska, U., Zackrisson, J., Åkesson, B., 2006. Influence of heat treatment on lipid oxidation and glutathione peroxidase activity in chicken and duck meat. Innovative Food Science and Emerging Technologies 7(1-2): 88-93.
  • Promeyrat, A., Le Louët, L., Kondjoyan, A., Astruc, T., Santé-Lhoutellier, V., Gatellier, P., Daudin, J.D., 2011. Combined effect of meat composition and heating parameters on the physicochemical state of proteins. Procedia Food Science 1(0): 1118-1125.
  • Cheah, P.B., Ledward, D.A., 1996. High pressure effects on lipid oxidation in minced pork. Meat Science 43(2): 123-134.
  • Jung, S., Nam, K.C., Ahn, D.U., Kim, H.J., Jo, C., 2013. Effect of phosvitin on lipid and protein oxidation in ground beef treated with high hydrostatic pressure. Meat Science 95(1): 8-13.
  • Giroux, M., Lacroix, M., 1998. Nutritional adequacy of irradiated meat - a review. Food Research International 31(4): 257-264.
  • Lund, M.N., Hviid, M.S., Skibsted L.H., 2007. The combined effect of antioxidants and modified atmosphere packaging on protein and lipid oxidation in beef patties during chill storage. Meat Science 76(2): 226-233.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Article
Authors

Haluk Ergezer This is me

Ramazan Gökçe This is me

Şeyma Hozer This is me

Tolga Akcan This is me

Publication Date March 1, 2016
Submission Date May 12, 2014
Published in Issue Year 2016 Volume: 14 Issue: 1

Cite

APA Ergezer, H., Gökçe, R., Hozer, Ş., Akcan, T. (2016). Et ve Ürünlerinde Protein Oksidasyonu: Etki Mekanizması, Tespit Yöntemleri ve Etkileri. Akademik Gıda, 14(1), 54-60.
AMA Ergezer H, Gökçe R, Hozer Ş, Akcan T. Et ve Ürünlerinde Protein Oksidasyonu: Etki Mekanizması, Tespit Yöntemleri ve Etkileri. Akademik Gıda. March 2016;14(1):54-60.
Chicago Ergezer, Haluk, Ramazan Gökçe, Şeyma Hozer, and Tolga Akcan. “Et Ve Ürünlerinde Protein Oksidasyonu: Etki Mekanizması, Tespit Yöntemleri Ve Etkileri”. Akademik Gıda 14, no. 1 (March 2016): 54-60.
EndNote Ergezer H, Gökçe R, Hozer Ş, Akcan T (March 1, 2016) Et ve Ürünlerinde Protein Oksidasyonu: Etki Mekanizması, Tespit Yöntemleri ve Etkileri. Akademik Gıda 14 1 54–60.
IEEE H. Ergezer, R. Gökçe, Ş. Hozer, and T. Akcan, “Et ve Ürünlerinde Protein Oksidasyonu: Etki Mekanizması, Tespit Yöntemleri ve Etkileri”, Akademik Gıda, vol. 14, no. 1, pp. 54–60, 2016.
ISNAD Ergezer, Haluk et al. “Et Ve Ürünlerinde Protein Oksidasyonu: Etki Mekanizması, Tespit Yöntemleri Ve Etkileri”. Akademik Gıda 14/1 (March 2016), 54-60.
JAMA Ergezer H, Gökçe R, Hozer Ş, Akcan T. Et ve Ürünlerinde Protein Oksidasyonu: Etki Mekanizması, Tespit Yöntemleri ve Etkileri. Akademik Gıda. 2016;14:54–60.
MLA Ergezer, Haluk et al. “Et Ve Ürünlerinde Protein Oksidasyonu: Etki Mekanizması, Tespit Yöntemleri Ve Etkileri”. Akademik Gıda, vol. 14, no. 1, 2016, pp. 54-60.
Vancouver Ergezer H, Gökçe R, Hozer Ş, Akcan T. Et ve Ürünlerinde Protein Oksidasyonu: Etki Mekanizması, Tespit Yöntemleri ve Etkileri. Akademik Gıda. 2016;14(1):54-60.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).