Research Article
BibTex RIS Cite

Morphometric and Physico-chemical Properties of Cornelian Cherry (Cornus mas L.) Grown in Çorum, Turkey

Year 2021, Volume: 19 Issue: 4, 373 - 380, 30.12.2021
https://doi.org/10.24323/akademik-gida.1050750

Abstract

Cornelian cherry (Cornus mas L.) has regained an increasing interest because of its nutraceutical and pharmaceutical potential. This study was designed to investigate the phenolic compounds (total phenolic, flavonoid, hydrolysable tannin, proanthocyanidin and anthocyanidin) and antioxidant capacity of Cornelian cherries. Some morphological (length, width, weight, flesh:seed ratio and colour) and physicochemical properties (dry matter, pH, soluble solid content, total acidity, sugar profile and ascorbic acid) of Cornelian cherries were also examined. Cornelian cherry samples were selected from twelve locations in the Çorum province of Turkey, where they are grown natively. Bioactive compounds were extracted by an ultrasound assisted method (37 kHz frequency and 100% amplitude) for 20 min at 20±2C. Aqueous methanol (70%) was used as extraction solvent with the solid:solvent ratio of 1:20. Glucose (3.02±0.9%) and fructose (1.57±0.4%) were found as the main sugars in cherry fruits. The CIE* colour values ranged from 25.18 to 33.00 for L*, 9.74 to 30.26 for a*, 2.46 to 14.41 for b* values. Total phenolic content, flavonoids, total anthocyanin, proanthocyanins, hydrolysable tannins, ascorbic acid and antioxidant activity varied between 230.4─559.8 mg GAE/100 g, 28.3─94.7 mg CE/100 g, 69.2─200.5 mg/100 g, 124.1─316.3 mg CE/100 g, 151.6─568.9 mg TAE/100 g, 29.0─103.3 mg /100 g, 24.4─92.5 μM TE/g, respectively. Antioxidant activity was positively correlated with bioactive content of Cornelian cherry fruits (p<0.001). The native Cornelian cherry population with the high antioxidant potential may be useful for future breeding programs, organic production or as food additive.

Supporting Institution

Hitit University Scientific Research Project Office

Project Number

19003.17.001

Thanks

The author would like to thank to Hitit University Scientific Research Project Office to financial support of 19003.17.001 numbered project.

References

  • [1] Pantelidis, G.E., Vasilakakis, M., Manganaris, G.A., Diamantidis, G.R. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry, 102(3), 777-783.
  • [2] Celep, E., Aydın, A., Yesilada, E. (2012). A comparative study on the in vitro antioxidant potentials of three edible fruits: Cornelian cherry, Japanese persimmon and cherry laurel. Food and Chemical Toxicology, 50(9), 3329-3335.
  • [3] Dinda, B., Kyriakopoulos, A.M., Dinda, S., Zoumpourlis, V., Thomaidis, N.S., Velegraki, A., Markopoulos, C., Dinda, M. (2016). Cornus mas L. (Cornelian cherry), an important European and Asian traditional food and medicine: Ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. Journal of Ethnopharmacology, 163, 670-690.
  • [4] Seeram, N.P., Schutzki, R., Chandra, A., Nair, M.G. (2002). Characterization, quantification, and bioactivities of anthocyanins in Cornus species. Journal of Agricultural and Food Chemistry, 50(9), 2519-2523.
  • [5] Ozdemir, A.E., Candir, E., Toplu, C., Yildiz, E.R.C.A.N. (2020). Effect of Hot Water Treatment on Astringency Removal in Persimmon Cultivars. International Journal of Fruit Science, 1-13.
  • [6] Chung, K.T., Wong, T.Y., Wei, C.I., Huang, Y.W., Lin, Y. (1998). Tannins and human health: a review. Critical Reviews in Food Science and Nutrition, 38(6), 421-464.
  • [7] Dumitraşcu, L., Enachi, E., Stănciuc, N., Aprodu, I. (2019). Optimization of ultrasound assisted extraction of phenolic compounds from cornelian cherry fruits using response surface methodology. CyTA-Journal of Food, 17(1), 814-823.
  • [8] Hassanpour, H., Yousef, H., Jafar, H., Mohammad, A. (2011). Antioxidant capacity and phytochemical properties of Cornelian cherry (Cornus mas L.) genotypes in Iran. Scientia Horticulturae, 129(3), 459-463.
  • [9] Celli, G.B., Ghanem, A., Brooks, M.S.L. (2015). Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology. Ultrasonics Sonochemistry, 27, 449-455.
  • [10] Jadhav, A.J., Holkar, C.R., Goswami, A.D., Pandit, A.B., Pinjari, D.V. (2016). Acoustic cavitation as a novel approach for extraction of oil from waste date seeds. ACS Sustainable Chemistry & Engineering, 4(8), 4256-4263.
  • [11] Bijelić, S., Gološin, B., Todorović, J.N., Cerović, S. (2011b). Morphological characteristics of best Cornelian cherry (Cornus mas L.) genotypes selected in Serbia. Genetic Resources and Crop Evolution, 58(5), 689-695.
  • [12] Pirlak, L., Guleryuz, M., Bolat, I. (2003). Promising cornelian cherries (Cornus mas L.) from the Northeastern Anatolia region of Turkey. Journal of the American Pomological Society, 57(1), 14.
  • [13] Demir, F., Kalyoncu, I.H. (2003). Some nutritional, pomological and physical properties of Cornelian cherry (Cornus mas L.). Journal of Food Engineering, 60(3), 335-341.
  • [14] Ercisli, S., Orhan, E., Esitken, A., Yildirim, N., Agar, G. (2008). Relationships among some Cornelian cherry genotypes (Cornus mas L.) based on RAPD analysis. Genetic Resources and Crop Evolution, 55(4), 613.
  • [15] Yilmaz, K.U., Ercisli, S., Zengin, Y., Sengul, M., Kafkas, E.Y. (2009). Preliminary characterisation of Cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chemistry, 114(2), 408-412.
  • [16] S. Ercisli. (2004). Cornelian cherry germplasm resources of Turkey. Journal of Fruit and Ornamental Plant Research, 12, 87-92.
  • [17] Ercisli, S., Yilmaz, S.O., Gadze, J., Dzubur, A., Hadziabulic, S., Aliman, Y. (2011). Some fruit characteristics of Cornelian cherries (Cornus mas L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1), 255-259.
  • [18] AOAC, C.A. (2005). Official methods of analysis of the Association of Analytical Chemists International.
  • [19] Raghu, V., Platel, K., Srinivasan, K. (2007). Comparison of ascorbic acid content of Emblica officinalis fruits determined by different analytical methods. Journal of Food Composition and Analysis, 20(6), 529-533.
  • [20] Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol, 299, 152-178.
  • [21] Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559.
  • [22] Çam, M., Hışıl, Y. (2010). Pressurised water extraction of polyphenols from pomegranate peels. Food Chemistry, 123(3), 878-885.
  • [23] Tanner, H., Brunner, H.R. (1979). Getraenke Analytik. D-7170. Schwaebisch Hall: Germany: Verlag Heller Chemie-und Verwaltungsgeselschaft mbH.
  • [24] Giusti, M.M., Wrolstad, R.E. (2001). Anthocyanins. Characterization and measurement with UV-visible spectroscopy, In Current Protocols in Food Analytical Chemistry, Wrolstad, R.E. and Schwartz, S.J. (eds.), p. 1-13, John Wiley & Sons, New York, U.S.A.
  • [25] Arts, M.J.T.J., Haenen, G.R.M.M., Voss, H.P., Bast, A. (2001). Masking of antioxidant capacity by the interaction of flavonoids with protein. Food and Chemical Toxicology, 39(8), 787-791.
  • [26] Tural, S., Koca, I. (2008). Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Scientia Horticulturae, 116(4), 362-366.
  • [27] Bijelić, S.M., Gološin, B.R., Todorović, J.I.N., Cerović, S.B., Popović, B.M. (2011a). Physicochemical fruit characteristics of Cornelian cherry (Cornus mas L.) genotypes from Serbia. Hortscience, 46(6), 849-853.
  • [28] Dragović-Uzelac, V., Levaj, B., Bursać, D., Pedisić, S., Radojčić, I., Biško, A. (2007). Total phenolics and antioxidant capacity assays of selected fruits. Agriculturae Conspectus Scientificus, 72(4), 279-284.
  • [29] Capanoglu, E., Boyacioglu, D., de Vos, R. C., Hall, R.D., Beekwilder, J. (2011). Procyanidins in fruit from Sour cherry (Prunus cerasus) differ strongly in chainlength from those in Laurel cherry (Prunus lauracerasus) and Cornelian cherry (Cornus mas). Journal of Berry Research, 1(3), 137-146.
  • [30] Pawlowska, A.M., Camangi, F., Braca, A. (2010). Quali-quantitative analysis of flavonoids of Cornus mas L. (Cornaceae) fruits. Food Chemistry, 119(3), 1257-1261.
  • [31] Kent, K., Charlton, K., O’Sullivan, T., Oddy, W.H. (2020). Estimated intake and major food sources of flavonoids among Australian adolescents. European Journal of Nutrition, 1-16.
  • [32] Einbond, L.S., Reynertson, K.A., Luo, X.D., Basile, M.J., Kennelly, E.J. (2004). Anthocyanin antioxidants from edible fruits. Food Chemistry, 84(1), 23-28.
  • [33] Wang, W., Jung, J., Tomasino, E., Zhao, Y. (2016). Optimization of solvent and ultrasound-assisted extraction for different anthocyanin rich fruit and their effects on anthocyanin compositions. LWT-Food Science and Technology, 72, 229-238.
  • [34] Beecher, G.R. (2003). Overview of dietary flavonoids: nomenclature, occurrence and intake. The Journal of Nutrition, 133(10), 3248S-3254S.
  • [35] Milenković-Anđelković, A.S., Anđelković, M.Z., Radovanović, A.N., Radovanović, B.C., Nikolić, V. (2015). Phenol composition, DPPH radical scavenging and antimicrobial activity of Cornelian cherry (Cornus mas) fruit and leaf extracts. Hemijska Industrija, 69(4), 331-337.
  • [36] Yang, B., Liu, P. (2014). Composition and biological activities of hydrolyzable tannins of fruits of Phyllanthus emblica. Journal of Agricultural and Food Chemistry, 62(3), 529-541.
  • [37] Dokhanieh, A.Y., Aghdam, M.S., Fard, J.R., Hassanpour, H. (2013). Postharvest salicylic acid treatment enhances antioxidant potential of cornelian cherry fruit. Scientia Horticulturae, 154, 31-36.
  • [38] Nishiyama, I., Yamashita, Y., Yamanaka, M., Shimohashi, A., Fukuda, T., Oota, T. (2004). Varietal difference in vitamin C content in the fruit of kiwifruit and other Actinidia species. Journal of Agricultural and Food Chemistry, 52, 5472-5475.
  • [39] Martinsen, B.K., Aaby, K., Skrede, G. (2020). Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chemistry, 316, 126297.
  • [40] Heim, K.E., Tagliaferro, A.R., Bobilya, D.J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572-584.

Çorum’da Yetişen Kızılcıkların (Cornus mas L.) Morfolojik ve Fiziko-kimyasal Özelliklerinin Değerlendirilmesi

Year 2021, Volume: 19 Issue: 4, 373 - 380, 30.12.2021
https://doi.org/10.24323/akademik-gida.1050750

Abstract

Kızılcığa olan ilgi sahip olduğu nutrasötikler ve farmasötik potansiyeli nedeniyle yeniden artmaktadır. Bu çalışma kızılcıkların fenolik içerikleri (toplam fenolik, flavonoid, hidrolize tanen, proantosiyanidin ve antosiyanidin) ve antioksidan kapasitesinin araştırılması için planlanmıştır. Ayrıca bazı morfolojik (meyve boyu, genişlik, ağırlık, meyve eti:çekirdek oranı ve renk) ve fiziko-kimyasal özellikleri (çözünür kuru madde, pH, toplam asitlik, kuru madde, şeker profili ve askorbik asit) de belirlenmiştir. Kızılcık örnekleri Çorum bölgesinde doğal olarak yetiştiği 12 farklı lokasyondan toplanmıştır. Biyoaktif bileşenler ultrases (37 kHz frekans ve %100 genlik) yardımıyla 20±2C’de 20 dakika süresince ekstrakte edilmiştir. Ektraksiyon 1:20 katı:solvent oranı ile %70’lik sulu metanol kullanılarak yapılmıştır. Glukoz (%3.02±0.9) ve fruktoz (%1.57±0.4) kızılcık meyvesinde bulunan başlıca şekerler olarak saptanmıştır. CIE* renk değerlerinin L* değeri için 25.18 ile 33.00, a* değeri için 9.74 ile 30.26, b* değeri için ise 2.46 ile 14.41 arasında değiştiği belirlenmiştir. Toplam fenolik, flavonoid, toplam antosiyanin, proantosiyanin, hidrolize tanen, askorbik asit miktarları ve antioksidan kapasiteleri sırasıyla 230.4─559.8 mg GAE/100 g, 28.3─94.7 mg CE/100 g, 69.2─200.5 mg/100 g, 124.1─316.3 mg CE/100 g, 151.6─568.9 mg TAE/100 g, 29.0─103.3 mg /100 g, 24.4─92.5 μM TE/g arasında değiştiği
tespit edilmiştir. Kızılcık meyvesinin biyoaktif bileşen içerikleri ile antioksidan kapasiteleri arasında güçlü pozitif korelasyon bulunmaktadır (p<0.001). Doğal olarak yetişmekte olan kızılcıkların sahip oldukları güçlü antioksidan potansiyel nedeniyle ileride yapılacak kültüvasyon çalışmaları, organik üretim ya da gıda katkısı olarak kullanımının faydalı olacağı düşünülmektedir.

Project Number

19003.17.001

References

  • [1] Pantelidis, G.E., Vasilakakis, M., Manganaris, G.A., Diamantidis, G.R. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry, 102(3), 777-783.
  • [2] Celep, E., Aydın, A., Yesilada, E. (2012). A comparative study on the in vitro antioxidant potentials of three edible fruits: Cornelian cherry, Japanese persimmon and cherry laurel. Food and Chemical Toxicology, 50(9), 3329-3335.
  • [3] Dinda, B., Kyriakopoulos, A.M., Dinda, S., Zoumpourlis, V., Thomaidis, N.S., Velegraki, A., Markopoulos, C., Dinda, M. (2016). Cornus mas L. (Cornelian cherry), an important European and Asian traditional food and medicine: Ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. Journal of Ethnopharmacology, 163, 670-690.
  • [4] Seeram, N.P., Schutzki, R., Chandra, A., Nair, M.G. (2002). Characterization, quantification, and bioactivities of anthocyanins in Cornus species. Journal of Agricultural and Food Chemistry, 50(9), 2519-2523.
  • [5] Ozdemir, A.E., Candir, E., Toplu, C., Yildiz, E.R.C.A.N. (2020). Effect of Hot Water Treatment on Astringency Removal in Persimmon Cultivars. International Journal of Fruit Science, 1-13.
  • [6] Chung, K.T., Wong, T.Y., Wei, C.I., Huang, Y.W., Lin, Y. (1998). Tannins and human health: a review. Critical Reviews in Food Science and Nutrition, 38(6), 421-464.
  • [7] Dumitraşcu, L., Enachi, E., Stănciuc, N., Aprodu, I. (2019). Optimization of ultrasound assisted extraction of phenolic compounds from cornelian cherry fruits using response surface methodology. CyTA-Journal of Food, 17(1), 814-823.
  • [8] Hassanpour, H., Yousef, H., Jafar, H., Mohammad, A. (2011). Antioxidant capacity and phytochemical properties of Cornelian cherry (Cornus mas L.) genotypes in Iran. Scientia Horticulturae, 129(3), 459-463.
  • [9] Celli, G.B., Ghanem, A., Brooks, M.S.L. (2015). Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology. Ultrasonics Sonochemistry, 27, 449-455.
  • [10] Jadhav, A.J., Holkar, C.R., Goswami, A.D., Pandit, A.B., Pinjari, D.V. (2016). Acoustic cavitation as a novel approach for extraction of oil from waste date seeds. ACS Sustainable Chemistry & Engineering, 4(8), 4256-4263.
  • [11] Bijelić, S., Gološin, B., Todorović, J.N., Cerović, S. (2011b). Morphological characteristics of best Cornelian cherry (Cornus mas L.) genotypes selected in Serbia. Genetic Resources and Crop Evolution, 58(5), 689-695.
  • [12] Pirlak, L., Guleryuz, M., Bolat, I. (2003). Promising cornelian cherries (Cornus mas L.) from the Northeastern Anatolia region of Turkey. Journal of the American Pomological Society, 57(1), 14.
  • [13] Demir, F., Kalyoncu, I.H. (2003). Some nutritional, pomological and physical properties of Cornelian cherry (Cornus mas L.). Journal of Food Engineering, 60(3), 335-341.
  • [14] Ercisli, S., Orhan, E., Esitken, A., Yildirim, N., Agar, G. (2008). Relationships among some Cornelian cherry genotypes (Cornus mas L.) based on RAPD analysis. Genetic Resources and Crop Evolution, 55(4), 613.
  • [15] Yilmaz, K.U., Ercisli, S., Zengin, Y., Sengul, M., Kafkas, E.Y. (2009). Preliminary characterisation of Cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chemistry, 114(2), 408-412.
  • [16] S. Ercisli. (2004). Cornelian cherry germplasm resources of Turkey. Journal of Fruit and Ornamental Plant Research, 12, 87-92.
  • [17] Ercisli, S., Yilmaz, S.O., Gadze, J., Dzubur, A., Hadziabulic, S., Aliman, Y. (2011). Some fruit characteristics of Cornelian cherries (Cornus mas L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1), 255-259.
  • [18] AOAC, C.A. (2005). Official methods of analysis of the Association of Analytical Chemists International.
  • [19] Raghu, V., Platel, K., Srinivasan, K. (2007). Comparison of ascorbic acid content of Emblica officinalis fruits determined by different analytical methods. Journal of Food Composition and Analysis, 20(6), 529-533.
  • [20] Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol, 299, 152-178.
  • [21] Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559.
  • [22] Çam, M., Hışıl, Y. (2010). Pressurised water extraction of polyphenols from pomegranate peels. Food Chemistry, 123(3), 878-885.
  • [23] Tanner, H., Brunner, H.R. (1979). Getraenke Analytik. D-7170. Schwaebisch Hall: Germany: Verlag Heller Chemie-und Verwaltungsgeselschaft mbH.
  • [24] Giusti, M.M., Wrolstad, R.E. (2001). Anthocyanins. Characterization and measurement with UV-visible spectroscopy, In Current Protocols in Food Analytical Chemistry, Wrolstad, R.E. and Schwartz, S.J. (eds.), p. 1-13, John Wiley & Sons, New York, U.S.A.
  • [25] Arts, M.J.T.J., Haenen, G.R.M.M., Voss, H.P., Bast, A. (2001). Masking of antioxidant capacity by the interaction of flavonoids with protein. Food and Chemical Toxicology, 39(8), 787-791.
  • [26] Tural, S., Koca, I. (2008). Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Scientia Horticulturae, 116(4), 362-366.
  • [27] Bijelić, S.M., Gološin, B.R., Todorović, J.I.N., Cerović, S.B., Popović, B.M. (2011a). Physicochemical fruit characteristics of Cornelian cherry (Cornus mas L.) genotypes from Serbia. Hortscience, 46(6), 849-853.
  • [28] Dragović-Uzelac, V., Levaj, B., Bursać, D., Pedisić, S., Radojčić, I., Biško, A. (2007). Total phenolics and antioxidant capacity assays of selected fruits. Agriculturae Conspectus Scientificus, 72(4), 279-284.
  • [29] Capanoglu, E., Boyacioglu, D., de Vos, R. C., Hall, R.D., Beekwilder, J. (2011). Procyanidins in fruit from Sour cherry (Prunus cerasus) differ strongly in chainlength from those in Laurel cherry (Prunus lauracerasus) and Cornelian cherry (Cornus mas). Journal of Berry Research, 1(3), 137-146.
  • [30] Pawlowska, A.M., Camangi, F., Braca, A. (2010). Quali-quantitative analysis of flavonoids of Cornus mas L. (Cornaceae) fruits. Food Chemistry, 119(3), 1257-1261.
  • [31] Kent, K., Charlton, K., O’Sullivan, T., Oddy, W.H. (2020). Estimated intake and major food sources of flavonoids among Australian adolescents. European Journal of Nutrition, 1-16.
  • [32] Einbond, L.S., Reynertson, K.A., Luo, X.D., Basile, M.J., Kennelly, E.J. (2004). Anthocyanin antioxidants from edible fruits. Food Chemistry, 84(1), 23-28.
  • [33] Wang, W., Jung, J., Tomasino, E., Zhao, Y. (2016). Optimization of solvent and ultrasound-assisted extraction for different anthocyanin rich fruit and their effects on anthocyanin compositions. LWT-Food Science and Technology, 72, 229-238.
  • [34] Beecher, G.R. (2003). Overview of dietary flavonoids: nomenclature, occurrence and intake. The Journal of Nutrition, 133(10), 3248S-3254S.
  • [35] Milenković-Anđelković, A.S., Anđelković, M.Z., Radovanović, A.N., Radovanović, B.C., Nikolić, V. (2015). Phenol composition, DPPH radical scavenging and antimicrobial activity of Cornelian cherry (Cornus mas) fruit and leaf extracts. Hemijska Industrija, 69(4), 331-337.
  • [36] Yang, B., Liu, P. (2014). Composition and biological activities of hydrolyzable tannins of fruits of Phyllanthus emblica. Journal of Agricultural and Food Chemistry, 62(3), 529-541.
  • [37] Dokhanieh, A.Y., Aghdam, M.S., Fard, J.R., Hassanpour, H. (2013). Postharvest salicylic acid treatment enhances antioxidant potential of cornelian cherry fruit. Scientia Horticulturae, 154, 31-36.
  • [38] Nishiyama, I., Yamashita, Y., Yamanaka, M., Shimohashi, A., Fukuda, T., Oota, T. (2004). Varietal difference in vitamin C content in the fruit of kiwifruit and other Actinidia species. Journal of Agricultural and Food Chemistry, 52, 5472-5475.
  • [39] Martinsen, B.K., Aaby, K., Skrede, G. (2020). Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chemistry, 316, 126297.
  • [40] Heim, K.E., Tagliaferro, A.R., Bobilya, D.J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572-584.
There are 40 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Nihal Güzel This is me 0000-0002-2387-9009

Project Number 19003.17.001
Publication Date December 30, 2021
Submission Date September 16, 2021
Published in Issue Year 2021 Volume: 19 Issue: 4

Cite

APA Güzel, N. (2021). Morphometric and Physico-chemical Properties of Cornelian Cherry (Cornus mas L.) Grown in Çorum, Turkey. Akademik Gıda, 19(4), 373-380. https://doi.org/10.24323/akademik-gida.1050750
AMA Güzel N. Morphometric and Physico-chemical Properties of Cornelian Cherry (Cornus mas L.) Grown in Çorum, Turkey. Akademik Gıda. December 2021;19(4):373-380. doi:10.24323/akademik-gida.1050750
Chicago Güzel, Nihal. “Morphometric and Physico-Chemical Properties of Cornelian Cherry (Cornus Mas L.) Grown in Çorum, Turkey”. Akademik Gıda 19, no. 4 (December 2021): 373-80. https://doi.org/10.24323/akademik-gida.1050750.
EndNote Güzel N (December 1, 2021) Morphometric and Physico-chemical Properties of Cornelian Cherry (Cornus mas L.) Grown in Çorum, Turkey. Akademik Gıda 19 4 373–380.
IEEE N. Güzel, “Morphometric and Physico-chemical Properties of Cornelian Cherry (Cornus mas L.) Grown in Çorum, Turkey”, Akademik Gıda, vol. 19, no. 4, pp. 373–380, 2021, doi: 10.24323/akademik-gida.1050750.
ISNAD Güzel, Nihal. “Morphometric and Physico-Chemical Properties of Cornelian Cherry (Cornus Mas L.) Grown in Çorum, Turkey”. Akademik Gıda 19/4 (December 2021), 373-380. https://doi.org/10.24323/akademik-gida.1050750.
JAMA Güzel N. Morphometric and Physico-chemical Properties of Cornelian Cherry (Cornus mas L.) Grown in Çorum, Turkey. Akademik Gıda. 2021;19:373–380.
MLA Güzel, Nihal. “Morphometric and Physico-Chemical Properties of Cornelian Cherry (Cornus Mas L.) Grown in Çorum, Turkey”. Akademik Gıda, vol. 19, no. 4, 2021, pp. 373-80, doi:10.24323/akademik-gida.1050750.
Vancouver Güzel N. Morphometric and Physico-chemical Properties of Cornelian Cherry (Cornus mas L.) Grown in Çorum, Turkey. Akademik Gıda. 2021;19(4):373-80.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).