Review
BibTex RIS Cite

Baklagiller: Fonksiyonel Özellikleri, Sağlık Etkileri ve Potansiyel Kullanımı

Year 2021, Volume: 19 Issue: 4, 442 - 449, 30.12.2021
https://doi.org/10.24323/akademik-gida.1050782

Abstract

Baklagiller bezelye, kuru fasulye, mercimek, nohut ve baklayı içeren Fabaceae (Leguminosae) familyasına ait bitkilerin kuru yenilebilir tohumlarıdır. Bakliyatlar, dünya nüfusunun özellikle hayvansal protein ile beslenemeyen veya dinsel ve kültürel alışkanlıklarından dolayı hayvansal besinleri tercih etmeyen kesimleri için önemli bir protein kaynağı oluşturmaktadır. Yüksek protein ve lif içerikleri, glutensiz olmaları, düşük glisemik indeksi ve antioksidan potansiyelleri nedeniyle gıdaların beslenme kalitesini iyileştirmek için yüksek potansiyele sahiptirler. Baklagillerin, yapılarında barındırdıkları potasyum, magnezyum, çözünür lif ve kolesterol içermeyen bileşimsel özellikleri, sağlık üzerindeki olumlu etkilerini ortaya çıkarmaktadır. Bakliyatlara yönelik farkındalık ve talep gün geçtikçe artmakta ve yeni bakliyat içeren ürünler, düşük glisemik indeksli ve lif içeriği bakımından zengindir. Aynı zamanda, glutensiz, vegan ve vejetaryen diyetlere artan ilgi, bakliyat tüketiminde artışa neden olmaktadır. Gıda formülasyonlarında bakliyat proteinlerinin, su ve yağ absorpsiyonu, çözünürlük, jel oluşturma, emülsifiye edici aktivite, köpürme kapasitesi ve köpük stabilitesi gibi teknolojik ve fonksiyonel özellikleri öne çıkmaktadır. Özellikle de endüstriyel düzeyde yenilikçi gıda işleme proseslerinde ve gıda formülasyonları hazırlama alanında da kullanılabilirliği yüksektir. Bu derlemede baklagillerin fonksiyonel özellikleri ve etkileri hakkında bilgi verilmiş, ayrıca bakliyatların gıda alanındaki alternatif kullanımları değerlendirilmiştir.

References

  • [1] Sarıoğlu, G., Velioğlu, Y.S. (2018). Baklagillerin bileşimi. Akademik Gıda, 16(4), 483-496.
  • [2] Aider, M., Sirois-Gosselin, M., Boye, J.I. (2012). Pea, lentil and chickpea protein application in bread making. Journal of Food Research, 1(4), 160.
  • [3] Bessada, S.M.F., Barreira, J.C.M., Oliveira, M.B.P.P. (2019). Pulses and food security: dietary protein, digestibility, bioactive and functional properties. In Trends in Food Science and Technology, 93, 53-68.
  • [4] Maphosa, Y., Jideani, V.A. (2017). The role of legumes in human nutrition. Functional Food - Improve Health through Adequate, 103-121.
  • [5] FAO. (1994). Pulses and derived products.
  • [6] Giusti, F., Caprioli, G., Ricciutelli, M., Vittori, S., Sagratini, G. (2017). Determination of fourteen polyphenols in pulses by High Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) and correlation study with antioxidant activity and colour. Food Chemistry, 221, 689–697.
  • [7] Boye, J., Zare, F., Pletch, A. (2010). Pulse proteins: processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414-431.
  • [8] Awika, J.M., Duodu, K.G. (2017). Bioactive polyphenols and peptides in cowpea (vigna unguiculata) and their health promoting properties: A review. In Journal Of Functional Foods, 38, 686–697.
  • [9] FAO. (2016). Legumes can help fight climate change, hunger and obesity in Latin America and the Caribbean.
  • [10] Kouris-Blazos, A., Belski, R. (2016). Health benefits of legumes and pulses with a focus on Australian sweet lupins. Asia Pacific Journal of Clinical Nutrition, 25(1), 1-17.
  • [11] Anonymous. (2013). Grain Composition Lupin Food.
  • [12] Luna-Vital, D.A., Mojica, L., González de Mejía, E., Mendoza, S., Loarca-Piña, G. (2015). Biological potential of protein hydrolysates and peptides from common bean (Phaseolus Vulgaris L.): A review. In Food Research International, 76(1), 39-50.
  • [13] Ha, V., Sievenpiper, J.L., de Souza, R.J., Jayalath, V.H., Mirrahimi, A., Agarwal, A., Chiavaroli, L., Mejia, S.B., Sacks, F.M., Di Buono, M., Bernstein, A.M., Leiter, A.L., Kris-Etherton, P.M., Vuksan, V., Bazinet, R.P., Josse, R.G., Beyene, J., Kendall, C.W.C., Jenkins, D.J.A. (2014). Effect of dietary pulse ıntake on established therapeutic lipid targets for cardiovascuar risk reduction: A systematic review and meta-analysis of randomized controlled trials. Canadian Medical Association Journal, 186(8), 252-262.
  • [14] Bazzano, L.A., Thompson, A.M., Tees, M.T., Nguyen, C.H., Winham, D. M. (2011). Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutrition, Metabolism & Cardiovascular Diseases, 21(2), 94-103.
  • [15] Tor-Roca, A., Garcia-Aloy, M., Mattivi, F., Llorach, R., Andres-Lacueva, C., Urpi-Sarda M. (2020). Phytochemicals in Legumes: A Qualitative Reviewed Analysis. Journal of Agricultural Food Chemistry, 68, 13486-13496.
  • [16] Campos-Vega, R., Loarca-Piña, G., Oomah, B.D. (2010). Minor components of pulses and their potential impact on human health. In Food Research International, 43(2), 461-482.
  • [17] Lucock, M. (2000). Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Molecular Genetics and Metabolism, 71(1–2), 121-138.
  • [18] Li, J., Mao, Q. (2017). Legume intake and risk of prostate cancer: A meta-analysis of prospective cohort studies. Oncotarget. 8(27), 44776-44784.
  • [19] Chen, M., Rao, Y., Zheng, Y., Wei, S., Li, Y., Guo, T., Yin, P. (2014). Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: A meta-analysis of epidemiological studies. Plos One 9, (2).
  • [20] Dessypris, N., Karalexi, M.A., Ntouvelis, E., Diamantaras, A.A., Papadakis, V., Baka, M., Hatzipantelis, E., Kourti, M., Moschovi, M., Polychronopoulou, S., Sidi, V., Stiakaki, E., Petridou, E.Th. (2017). Association of maternal and ındex child’s diet with subsequent leukemia risk: A systematic review and meta analysis. Cancer Epidemiology, 47, 64-75.
  • [21] Schlesinger, S., Neuenschwander, M., Schwedhelm, C.G., Bechthold, A., Boeing, H., Schwingshackl, L. (2019). Food groups and risk of overweight, obesity, and weight gain: A systematic review and dose-response meta-analysis of prospective studies. Advances in Nutrition; Oxford University Press, 205−218.
  • [22] Muzquiz, M., Varela, A., Burbano, C., Cuadrado, C., Guillamón, E., Pedrosa, M.M. (2012). Bioactive compounds in legumes: pronutritive and antinutritive actions. implications for nutrition and health. In Phytochemistry Reviews, 11(2–3), 227-244.
  • [23] Rebello, C.J., Greenway, F.L., Finley, J.W. (2014). A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obesity Reviews, 15(5), 392-407.
  • [24] Celleno, L., Tolaini, M.V., D’Amore, A., Perricone, N.V., Preuss, H.G. (2007). A dietary supplement containing standardized Phaseolus vulgaris extract influences body composition of overweight men and women. International Journal of Medical Sciences, 4(1), 45-52
  • [25] Çakır, Ö., Uçarlı, C., Tarhan, Ç., Pekmez, M., Turgut-Kara, N. (2019). Nutritional and health benefits of legumes and their distinctive genomic properties. Food Science and Technology, 39(1), 1-12.
  • [26] Jukanti, A.K., Gaur, P.M., Gowda, C.L., Chibbar, R.N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition, 108(1), 1, 11-S26.
  • [27] Nestel, P., Cehun, M., Chronopoulos, A. (2004). Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations. The American Journal of Clinical Nutrition, 79(3), 390-395.
  • [28] Kalogeropoulos, N., Chiou, A., Ioannou, M., Karathanos, V.T., Hassapidou, M., Andrikopoulos, N.K. (2010). Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chemistry, 121(3), 682-690.
  • [29] Ogwu, M.C., Osawaru , M.E, Obahiagbon, G.E. (2017). Ethnobotanical survey of medicinal plants used for traditional reproductive care by Usen people of Edo State, Nigeria. Malaya Journal of Biosciences, 4(1), 17-29.
  • [30] Benevides, C.M., De J., Trindade, B.A., Lopes, M.V. (2018). Potentialities of legumes in the pharmaceutical industry. Journal of Analytical & Pharmaceutical Research, 7(3), 369-373.
  • [31] Uprety, Y., Asselin, H., Boon, E.K., Yadav, S., Shrestha, K.K. (2010). Indigenous use and bio-efficacy of medicinal plants in the Rasuwa District, Central Nepal. Journal of Ethnobiology and Ethnomedicine, 6(3), 1-10.
  • [32] Anderson, W.J., Major, A.W. (2002). Pulses and lipemia, short- and long-term effect: potential in the prevention of cardiovascular disease. British Journal of Nutrition, 88(3), 263-271.
  • [33] Flight, I., Clifton, P. (2006). Cereal grains and legumes in the prevention of coronary heart disease and stroke: a review of the literature. European Journal of Clinical Nutrition, 60, 1145-1159.
  • [34] Pina-Pérez, M.C., Ferrús Pérez, M.A. (2018). Antimicrobial potential of legume extracts against foodborne pathogens: A Review. In Trends in Food Science and Technology, 72, 114-124.
  • [35] Osman, A. El-araby, G.M., Taha, H. (2016). Potential use as a bio-preservative from lupin protein hydrolysate generated by alcalase in food system. Journal of Applied Biology & Biotechnology, 4(02), 76-81.
  • [36] Karkouch, I., Tabbene, O., Gharbi, D., Ben Mlouka, M.A., Elkahoui, S., Rihouey, C., Coquet, L., Cosette, P., Jouenne, T., Limam, F. (2017). Antioxidant, antityrosinase and antibiofilm activities of synthesized peptides derived from vicia faba protein hydrolysate: a powerful agents in cosmetic application. Industrial Crops and Products, 109, 310-9319.
  • [37] Pekşen, E., Artık, C. (2005). Antibesinsel maddeler ve yemeklik baklagillerin besleyici değerleri. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 20(2), 110-120.
  • [38] Sánchez-Chino, X., Jiménez-Martínez, C., Dávila-Ortiz, G., Álvarez-González, I., Madrigal-Bujaidar, E. (2015). Nutrient and nonnutrient components of legumes, and its chemopreventive activity: A review. Nutrition and Cancer, 67(3), 401-410.
  • [39] Roy, F., Boye, J.I., Simpson, B.K. (2010). Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. In Food Research International, 43(2), 432-442.
  • [40] Gilani, G.S., Cockell, K.A., Sepehr, E. (2005). Effects of antinutritional factors on protein digestibility and amino acid availability in foods. Journal of AOAC International, 88(3), 967-987.
  • [41] Jezierny, D., Mosenthin, R., Bauer, E. (2010). The use of grain legumes as a protein source in pig nutrition: A Review. In Animal Feed Science And Technology, 157(3–4), 111-128.
  • [42] Shi, L., Arntfield, S.D., Nickerson, M. (2018). Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of canadian pulses. Food Research International, 107, 660-668.
  • [43] Gupta, R.K., Gangoliya, S.S., Singh, N.K. (2015). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. In Journal of Food Science And Technology, 52(2), 676-684.
  • [44] Oghbaei, M., Prakash, J. (2016). Effect of Primary processing of cereals and legumes on its nutritional quality: a comprehensive review. Cogent Food & Agriculture, 2(1), 1-14.
  • [45] Vasantha Kumari, P., Sangeetha, N. (2017). Nutritional significance of cereals and legumes based food mix- A Review. International Journal of Agricultural and Life Sciences-IJALS, 3(1), 115-122.
  • [46] Wang, N., Hatcher, D.W., Toews, R., Gawalko, E.J. (2009). Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris). LWT - Food Science and Technology, 42(4), 842-848.
  • [47] Margier, M., Georgé, S., Hafnaoui, N., Remond, D., Nowicki, M., Du Chaffaut, L., Amiot, M.J., Reboul, E. (2018). Nutritional composition and bioactive content of legumes: characterization of pulses frequently consumed in france and effect of the cooking method. Nutrients, 10(11), 1668.
  • [48] Pasqualone, A., Costantini, M., Coldea, T., Summo, C.(2020). Use of legumes in extrusion cooking: A Review. Foods 9 (7), 958.
  • [49] Lam, A.C.Y., Can Karaca, A., Tyler, R.T., Nickerson, M.T. (2018). Pea protein isolates: structure, extraction and functionality. Food Reviews International, 34(2), 126-147.
  • [50] Shevkani, K., Kaur, A., Kumar, S., Singh, N. (2015). Cowpea protein isolates: functional properties and application in gluten-free rice muffins. LWT - Food Science and Technology, 63(2), 927-933.
  • [51] Barać, M.B., Pešić, M.B., Stanojević, S.P., Kostić, A.Z., Čabrilo, S.B. (2015). Techno-functional properties of pea (pisum sativum) protein isolates-a review. in Acta Periodica Technologica 46, 1-18.
  • [52] Day, L. (2013). Proteins from land plants - potential resources for human nutrition and food security. In Trends in Food Science And Technology, 32(1), 25-42.
  • [53] Capraro, J., Magni, C., Scarafoni, A., Caramanico, R., Rossi, F., Morlacchini, M., Duranti, M. (2014). Pasta supplemented with isolated lupin protein fractions reduces body weight gain and food ıntake of rats and decreases plasma glucose concentration upon glucose overload trial. Food And Function, 5(2), 375-380.
  • [54] Babault, N., Païzis, C., Deley, G., Guérin-Deremaux, L., Saniez, M.H., Lefranc-Millot, C., Allaert, A.F. (2015). Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, placebo-controlled clinical trial vs. Whey protein. Journal of the International Society Of Sports Nutrition, 12(1), 1-9.
  • [55] Boschin, G., Scigliuolo, G.M., Resta, D., Arnoldi, A. (2014). Ace-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Food Chemistry, 145,34-40.
  • [56] Rosa-Sibakov, N., Heiniö, R.L., Cassan, D., Holopainen-Mantila, U., Micard, V., Lantto, R., Sozer, N. (2016). Effect of bioprocessing and fractionation on the structural, textural and sensory properties of gluten-free faba bean pasta. LWT - Food Science and Technology, 67, 27-36.
  • [57] Giménez, M.A., González, R.J., Wagner, J., Torres, R., Lobo, M.O., Samman, N.C. (2013). Effect of extrusion conditions on physicochemical and sensorial properties of corn-broad beans (Vicia Faba) spaghetti type pasta. Food Chemistry, 136(2), 538-545.
  • [58] Gabriel, E.G., Jideani, V.A., Ikhu-omoregbe, D.I.O. (2013). Investigation of the emulsifying properties of Bambara groundnut flour and starch. International Journal of Food Science and Engineering, 7, 539-547.
  • [59] Fasoyiro, S., Widodo, Y., Taiwo, K.A. (2012). Processing and utilization of legumes in the tropics. In book: Trends in Vital Food and Control Engineering, 71-84.

Legumes: Functional Properties, Health Effects and Potential Uses

Year 2021, Volume: 19 Issue: 4, 442 - 449, 30.12.2021
https://doi.org/10.24323/akademik-gida.1050782

Abstract

Legumes are dry edible seeds of plants belonging to the Fabaceae (Leguminosae) family, which include field peas, dry beans, lentils, chickpeas and faba beans. Pulses constitute an important protein source for the parts of the world population who cannot be fed with animal protein or do not prefer animal foods due to their religious and cultural habits. Legumes have high potential to improve the nutritional quality of foods due to their high protein and fiber content, gluten-free nature, low glycemic index and antioxidant potential. Legumes, which are cholesterol-free, contain potassium, magnesium, and soluble fiber, and this nature reveals their beneficial effects on human health. The awareness and demand for pulses are still growing, and new products with various pulses contain proteins and fibers with a low glycemic index. Simultaneously, the increasing interest in gluten-free, vegan, and vegetarian diets is accelerating legumes consumption. In food formulations, the technological and functional properties of legume proteins such as water and oil absorption, solubility, gel-forming, emulsifying activity, foaming capacity, and foam stability come to the fore. It can also be used in innovative food processing processes and food formulations, especially at the industrial level. In this review, information about the functional properties of legumes is given, and alternative uses of legumes in the food applications are evaluated.

References

  • [1] Sarıoğlu, G., Velioğlu, Y.S. (2018). Baklagillerin bileşimi. Akademik Gıda, 16(4), 483-496.
  • [2] Aider, M., Sirois-Gosselin, M., Boye, J.I. (2012). Pea, lentil and chickpea protein application in bread making. Journal of Food Research, 1(4), 160.
  • [3] Bessada, S.M.F., Barreira, J.C.M., Oliveira, M.B.P.P. (2019). Pulses and food security: dietary protein, digestibility, bioactive and functional properties. In Trends in Food Science and Technology, 93, 53-68.
  • [4] Maphosa, Y., Jideani, V.A. (2017). The role of legumes in human nutrition. Functional Food - Improve Health through Adequate, 103-121.
  • [5] FAO. (1994). Pulses and derived products.
  • [6] Giusti, F., Caprioli, G., Ricciutelli, M., Vittori, S., Sagratini, G. (2017). Determination of fourteen polyphenols in pulses by High Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) and correlation study with antioxidant activity and colour. Food Chemistry, 221, 689–697.
  • [7] Boye, J., Zare, F., Pletch, A. (2010). Pulse proteins: processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414-431.
  • [8] Awika, J.M., Duodu, K.G. (2017). Bioactive polyphenols and peptides in cowpea (vigna unguiculata) and their health promoting properties: A review. In Journal Of Functional Foods, 38, 686–697.
  • [9] FAO. (2016). Legumes can help fight climate change, hunger and obesity in Latin America and the Caribbean.
  • [10] Kouris-Blazos, A., Belski, R. (2016). Health benefits of legumes and pulses with a focus on Australian sweet lupins. Asia Pacific Journal of Clinical Nutrition, 25(1), 1-17.
  • [11] Anonymous. (2013). Grain Composition Lupin Food.
  • [12] Luna-Vital, D.A., Mojica, L., González de Mejía, E., Mendoza, S., Loarca-Piña, G. (2015). Biological potential of protein hydrolysates and peptides from common bean (Phaseolus Vulgaris L.): A review. In Food Research International, 76(1), 39-50.
  • [13] Ha, V., Sievenpiper, J.L., de Souza, R.J., Jayalath, V.H., Mirrahimi, A., Agarwal, A., Chiavaroli, L., Mejia, S.B., Sacks, F.M., Di Buono, M., Bernstein, A.M., Leiter, A.L., Kris-Etherton, P.M., Vuksan, V., Bazinet, R.P., Josse, R.G., Beyene, J., Kendall, C.W.C., Jenkins, D.J.A. (2014). Effect of dietary pulse ıntake on established therapeutic lipid targets for cardiovascuar risk reduction: A systematic review and meta-analysis of randomized controlled trials. Canadian Medical Association Journal, 186(8), 252-262.
  • [14] Bazzano, L.A., Thompson, A.M., Tees, M.T., Nguyen, C.H., Winham, D. M. (2011). Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutrition, Metabolism & Cardiovascular Diseases, 21(2), 94-103.
  • [15] Tor-Roca, A., Garcia-Aloy, M., Mattivi, F., Llorach, R., Andres-Lacueva, C., Urpi-Sarda M. (2020). Phytochemicals in Legumes: A Qualitative Reviewed Analysis. Journal of Agricultural Food Chemistry, 68, 13486-13496.
  • [16] Campos-Vega, R., Loarca-Piña, G., Oomah, B.D. (2010). Minor components of pulses and their potential impact on human health. In Food Research International, 43(2), 461-482.
  • [17] Lucock, M. (2000). Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Molecular Genetics and Metabolism, 71(1–2), 121-138.
  • [18] Li, J., Mao, Q. (2017). Legume intake and risk of prostate cancer: A meta-analysis of prospective cohort studies. Oncotarget. 8(27), 44776-44784.
  • [19] Chen, M., Rao, Y., Zheng, Y., Wei, S., Li, Y., Guo, T., Yin, P. (2014). Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: A meta-analysis of epidemiological studies. Plos One 9, (2).
  • [20] Dessypris, N., Karalexi, M.A., Ntouvelis, E., Diamantaras, A.A., Papadakis, V., Baka, M., Hatzipantelis, E., Kourti, M., Moschovi, M., Polychronopoulou, S., Sidi, V., Stiakaki, E., Petridou, E.Th. (2017). Association of maternal and ındex child’s diet with subsequent leukemia risk: A systematic review and meta analysis. Cancer Epidemiology, 47, 64-75.
  • [21] Schlesinger, S., Neuenschwander, M., Schwedhelm, C.G., Bechthold, A., Boeing, H., Schwingshackl, L. (2019). Food groups and risk of overweight, obesity, and weight gain: A systematic review and dose-response meta-analysis of prospective studies. Advances in Nutrition; Oxford University Press, 205−218.
  • [22] Muzquiz, M., Varela, A., Burbano, C., Cuadrado, C., Guillamón, E., Pedrosa, M.M. (2012). Bioactive compounds in legumes: pronutritive and antinutritive actions. implications for nutrition and health. In Phytochemistry Reviews, 11(2–3), 227-244.
  • [23] Rebello, C.J., Greenway, F.L., Finley, J.W. (2014). A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obesity Reviews, 15(5), 392-407.
  • [24] Celleno, L., Tolaini, M.V., D’Amore, A., Perricone, N.V., Preuss, H.G. (2007). A dietary supplement containing standardized Phaseolus vulgaris extract influences body composition of overweight men and women. International Journal of Medical Sciences, 4(1), 45-52
  • [25] Çakır, Ö., Uçarlı, C., Tarhan, Ç., Pekmez, M., Turgut-Kara, N. (2019). Nutritional and health benefits of legumes and their distinctive genomic properties. Food Science and Technology, 39(1), 1-12.
  • [26] Jukanti, A.K., Gaur, P.M., Gowda, C.L., Chibbar, R.N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition, 108(1), 1, 11-S26.
  • [27] Nestel, P., Cehun, M., Chronopoulos, A. (2004). Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations. The American Journal of Clinical Nutrition, 79(3), 390-395.
  • [28] Kalogeropoulos, N., Chiou, A., Ioannou, M., Karathanos, V.T., Hassapidou, M., Andrikopoulos, N.K. (2010). Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chemistry, 121(3), 682-690.
  • [29] Ogwu, M.C., Osawaru , M.E, Obahiagbon, G.E. (2017). Ethnobotanical survey of medicinal plants used for traditional reproductive care by Usen people of Edo State, Nigeria. Malaya Journal of Biosciences, 4(1), 17-29.
  • [30] Benevides, C.M., De J., Trindade, B.A., Lopes, M.V. (2018). Potentialities of legumes in the pharmaceutical industry. Journal of Analytical & Pharmaceutical Research, 7(3), 369-373.
  • [31] Uprety, Y., Asselin, H., Boon, E.K., Yadav, S., Shrestha, K.K. (2010). Indigenous use and bio-efficacy of medicinal plants in the Rasuwa District, Central Nepal. Journal of Ethnobiology and Ethnomedicine, 6(3), 1-10.
  • [32] Anderson, W.J., Major, A.W. (2002). Pulses and lipemia, short- and long-term effect: potential in the prevention of cardiovascular disease. British Journal of Nutrition, 88(3), 263-271.
  • [33] Flight, I., Clifton, P. (2006). Cereal grains and legumes in the prevention of coronary heart disease and stroke: a review of the literature. European Journal of Clinical Nutrition, 60, 1145-1159.
  • [34] Pina-Pérez, M.C., Ferrús Pérez, M.A. (2018). Antimicrobial potential of legume extracts against foodborne pathogens: A Review. In Trends in Food Science and Technology, 72, 114-124.
  • [35] Osman, A. El-araby, G.M., Taha, H. (2016). Potential use as a bio-preservative from lupin protein hydrolysate generated by alcalase in food system. Journal of Applied Biology & Biotechnology, 4(02), 76-81.
  • [36] Karkouch, I., Tabbene, O., Gharbi, D., Ben Mlouka, M.A., Elkahoui, S., Rihouey, C., Coquet, L., Cosette, P., Jouenne, T., Limam, F. (2017). Antioxidant, antityrosinase and antibiofilm activities of synthesized peptides derived from vicia faba protein hydrolysate: a powerful agents in cosmetic application. Industrial Crops and Products, 109, 310-9319.
  • [37] Pekşen, E., Artık, C. (2005). Antibesinsel maddeler ve yemeklik baklagillerin besleyici değerleri. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 20(2), 110-120.
  • [38] Sánchez-Chino, X., Jiménez-Martínez, C., Dávila-Ortiz, G., Álvarez-González, I., Madrigal-Bujaidar, E. (2015). Nutrient and nonnutrient components of legumes, and its chemopreventive activity: A review. Nutrition and Cancer, 67(3), 401-410.
  • [39] Roy, F., Boye, J.I., Simpson, B.K. (2010). Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. In Food Research International, 43(2), 432-442.
  • [40] Gilani, G.S., Cockell, K.A., Sepehr, E. (2005). Effects of antinutritional factors on protein digestibility and amino acid availability in foods. Journal of AOAC International, 88(3), 967-987.
  • [41] Jezierny, D., Mosenthin, R., Bauer, E. (2010). The use of grain legumes as a protein source in pig nutrition: A Review. In Animal Feed Science And Technology, 157(3–4), 111-128.
  • [42] Shi, L., Arntfield, S.D., Nickerson, M. (2018). Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of canadian pulses. Food Research International, 107, 660-668.
  • [43] Gupta, R.K., Gangoliya, S.S., Singh, N.K. (2015). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. In Journal of Food Science And Technology, 52(2), 676-684.
  • [44] Oghbaei, M., Prakash, J. (2016). Effect of Primary processing of cereals and legumes on its nutritional quality: a comprehensive review. Cogent Food & Agriculture, 2(1), 1-14.
  • [45] Vasantha Kumari, P., Sangeetha, N. (2017). Nutritional significance of cereals and legumes based food mix- A Review. International Journal of Agricultural and Life Sciences-IJALS, 3(1), 115-122.
  • [46] Wang, N., Hatcher, D.W., Toews, R., Gawalko, E.J. (2009). Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris). LWT - Food Science and Technology, 42(4), 842-848.
  • [47] Margier, M., Georgé, S., Hafnaoui, N., Remond, D., Nowicki, M., Du Chaffaut, L., Amiot, M.J., Reboul, E. (2018). Nutritional composition and bioactive content of legumes: characterization of pulses frequently consumed in france and effect of the cooking method. Nutrients, 10(11), 1668.
  • [48] Pasqualone, A., Costantini, M., Coldea, T., Summo, C.(2020). Use of legumes in extrusion cooking: A Review. Foods 9 (7), 958.
  • [49] Lam, A.C.Y., Can Karaca, A., Tyler, R.T., Nickerson, M.T. (2018). Pea protein isolates: structure, extraction and functionality. Food Reviews International, 34(2), 126-147.
  • [50] Shevkani, K., Kaur, A., Kumar, S., Singh, N. (2015). Cowpea protein isolates: functional properties and application in gluten-free rice muffins. LWT - Food Science and Technology, 63(2), 927-933.
  • [51] Barać, M.B., Pešić, M.B., Stanojević, S.P., Kostić, A.Z., Čabrilo, S.B. (2015). Techno-functional properties of pea (pisum sativum) protein isolates-a review. in Acta Periodica Technologica 46, 1-18.
  • [52] Day, L. (2013). Proteins from land plants - potential resources for human nutrition and food security. In Trends in Food Science And Technology, 32(1), 25-42.
  • [53] Capraro, J., Magni, C., Scarafoni, A., Caramanico, R., Rossi, F., Morlacchini, M., Duranti, M. (2014). Pasta supplemented with isolated lupin protein fractions reduces body weight gain and food ıntake of rats and decreases plasma glucose concentration upon glucose overload trial. Food And Function, 5(2), 375-380.
  • [54] Babault, N., Païzis, C., Deley, G., Guérin-Deremaux, L., Saniez, M.H., Lefranc-Millot, C., Allaert, A.F. (2015). Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, placebo-controlled clinical trial vs. Whey protein. Journal of the International Society Of Sports Nutrition, 12(1), 1-9.
  • [55] Boschin, G., Scigliuolo, G.M., Resta, D., Arnoldi, A. (2014). Ace-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Food Chemistry, 145,34-40.
  • [56] Rosa-Sibakov, N., Heiniö, R.L., Cassan, D., Holopainen-Mantila, U., Micard, V., Lantto, R., Sozer, N. (2016). Effect of bioprocessing and fractionation on the structural, textural and sensory properties of gluten-free faba bean pasta. LWT - Food Science and Technology, 67, 27-36.
  • [57] Giménez, M.A., González, R.J., Wagner, J., Torres, R., Lobo, M.O., Samman, N.C. (2013). Effect of extrusion conditions on physicochemical and sensorial properties of corn-broad beans (Vicia Faba) spaghetti type pasta. Food Chemistry, 136(2), 538-545.
  • [58] Gabriel, E.G., Jideani, V.A., Ikhu-omoregbe, D.I.O. (2013). Investigation of the emulsifying properties of Bambara groundnut flour and starch. International Journal of Food Science and Engineering, 7, 539-547.
  • [59] Fasoyiro, S., Widodo, Y., Taiwo, K.A. (2012). Processing and utilization of legumes in the tropics. In book: Trends in Vital Food and Control Engineering, 71-84.
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Papers
Authors

Elif Atalay This is me 0000-0003-2018-7354

İncilay Gökbulut This is me 0000-0003-4994-5788

Publication Date December 30, 2021
Submission Date March 22, 2021
Published in Issue Year 2021 Volume: 19 Issue: 4

Cite

APA Atalay, E., & Gökbulut, İ. (2021). Baklagiller: Fonksiyonel Özellikleri, Sağlık Etkileri ve Potansiyel Kullanımı. Akademik Gıda, 19(4), 442-449. https://doi.org/10.24323/akademik-gida.1050782
AMA Atalay E, Gökbulut İ. Baklagiller: Fonksiyonel Özellikleri, Sağlık Etkileri ve Potansiyel Kullanımı. Akademik Gıda. December 2021;19(4):442-449. doi:10.24323/akademik-gida.1050782
Chicago Atalay, Elif, and İncilay Gökbulut. “Baklagiller: Fonksiyonel Özellikleri, Sağlık Etkileri Ve Potansiyel Kullanımı”. Akademik Gıda 19, no. 4 (December 2021): 442-49. https://doi.org/10.24323/akademik-gida.1050782.
EndNote Atalay E, Gökbulut İ (December 1, 2021) Baklagiller: Fonksiyonel Özellikleri, Sağlık Etkileri ve Potansiyel Kullanımı. Akademik Gıda 19 4 442–449.
IEEE E. Atalay and İ. Gökbulut, “Baklagiller: Fonksiyonel Özellikleri, Sağlık Etkileri ve Potansiyel Kullanımı”, Akademik Gıda, vol. 19, no. 4, pp. 442–449, 2021, doi: 10.24323/akademik-gida.1050782.
ISNAD Atalay, Elif - Gökbulut, İncilay. “Baklagiller: Fonksiyonel Özellikleri, Sağlık Etkileri Ve Potansiyel Kullanımı”. Akademik Gıda 19/4 (December 2021), 442-449. https://doi.org/10.24323/akademik-gida.1050782.
JAMA Atalay E, Gökbulut İ. Baklagiller: Fonksiyonel Özellikleri, Sağlık Etkileri ve Potansiyel Kullanımı. Akademik Gıda. 2021;19:442–449.
MLA Atalay, Elif and İncilay Gökbulut. “Baklagiller: Fonksiyonel Özellikleri, Sağlık Etkileri Ve Potansiyel Kullanımı”. Akademik Gıda, vol. 19, no. 4, 2021, pp. 442-9, doi:10.24323/akademik-gida.1050782.
Vancouver Atalay E, Gökbulut İ. Baklagiller: Fonksiyonel Özellikleri, Sağlık Etkileri ve Potansiyel Kullanımı. Akademik Gıda. 2021;19(4):442-9.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).