Research Article
BibTex RIS Cite

Optimization of Spray Drying Encapsulation of Bioactive Compounds from Organic Blueberry Extract

Year 2022, Volume: 20 Issue: 1, 1 - 11, 03.04.2022
https://doi.org/10.24323/akademik-gida.1097801

Abstract

In this study, the effects of spray drying parameters on organic blueberry extract were investigated. High amounts of bioactive compounds were extracted from blueberry by solvent extraction. Response surface methodology was applied for the optimization of spray drying conditions. Extract mass percentage of feed mixture (m/m in dry basis 15-50%), air inlet temperature (120-150°C) and solid content of feed (20-40°Brix) were independent variables. Operational efficiency (yield) and phenolic retention were responses. Maltodextrin was used as an encapsulating agent. The optimum extract mass percentage, temperature and solid feed content were estimated as 19.51% (m/m) extract, 120°C and 20.03°Brix, respectively. The maximum levels of responses under optimum conditions were obtained as operational efficiency of 91.20% and phenolic retention of 87.12%. It was found that the most important variable for bioactive compound retention was the extract mass percentage. Encapsulated powder had 3.19% moisture content, and contained 5.54 mg gallic acid equivalents (GAE), 1.52 mg cyanidin-3-glucoside (C3G), and 46.41 μmol Trolox equivalents (TE) per gram dry powder. DPPH free radical scavenging activity value (EC50) of powder was 8.14 mg soluble solids/mL. Bioactive powder obtained could be considered as a possible functional food ingredient. In conclusion, blueberry extract powder could be efficiently produced by spray drying.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TÜBİTAK), FP7 ERA-Net CORE Organic Plus, European Commission, Bursa Central Research Institute of Food and Feed Control

Project Number

2211/2210-C

Thanks

We are very grateful for the financial support of “The Scientific and Technological Research Council of Turkey” (TUBITAK) during the research of this subject (2211/2210-C). We are grateful for the financial support provided by funding bodies within the FP7 ERA-Net CORE Organic Plus, and with co-funds from the European Commission for this project. We would also like to thank Bursa Central Research Institute of Food and Feed Control for financial support.

References

  • [1] Jiménez-Aguilar, D.M., Ortega-Regules, A.E., Lozada-Ramírez, J.D., Pérez-Pérez, M.C.I., Vernon-Carter, E.J., Welti-Chanes, J. (2011). Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. Journal of Food Composition and Analysis, 24(6), 889-894.
  • [2] Araujo-Díaz, S.B., Leyva-Porras, C., Aguirre-Bañuelos, P., Álvarez-Salas, C., Saavedra-Leos, Z. (2017). Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydrate Polymers, 167, 317-325.
  • [3] Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673-24706.
  • [4] Han, X., Shen, T., Lou, H. (2007). Dietary polyphenols and their biological significance. International Journal of Molecular Sciences, 8(9), 950-988.
  • [5] FAO, (2018). Statistical data of FAO. Retrieved from: http://www.fao.org/faostat/en/#data/QC/ (Accessed 5 August 2018).
  • [6] Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Omar, A.K.M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426-436.
  • [7] Atacan, K., Yanık, D.K. (2017). Yaban mersini (Vaccinium corymbosum L.) suyu konsantresinin püskürtmeli kurutucuda kurutulması: Tepki yüzey yöntemiyle optimizasyon. Akademik Gıda, 15(2), 139-148.
  • [8] Ma, M., Dolan, K.D. (2011). Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by‐products. Journal of Food Science, 76(7), 156-164.
  • [9] Turan, F.T., Cengiz, A., Kahyaoglu, T. (2015). Evaluation of ultrasonic nozzle with spray-drying as a novel method for the microencapsulation of blueberry's bioactive compounds. Innovative Food Science and Emerging Technologies, 32, 136-145.
  • [10] Flores, F.P., Singh, R.K., Kong, F. (2014). Physical and storage properties of spray-dried blueberry pomace extract with whey protein isolate as wall material. Journal of Food Engineering, 137, 1-6.
  • [11] Fang, Z., Bhandari, B. (2010). Encapsulation of polyphenols–a review. Trends in Food Science and Technology, 21(10), 510-523.
  • [12] Tatar Turan, F., Cengiz, A., Sandıkçı, D., Dervisoglu, M., Kahyaoglu, T. (2016). Influence of an ultrasonic nozzle in spray‐drying and storage on the properties of blueberry powder and microcapsules. Journal of the Science of Food and Agriculture, 96(12), 4062-4076.
  • [13] da Rosa, J.R., Nunes, G.L., Motta, M.H., Fortes, J.P., Weis, G.C.C., Hecktheuer, L.H.R., da Rosa, C.S. (2019). Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocolloids, 89, 742-748.
  • [14] Mahdavi, S.A., Jafari, S.M., Ghorbani, M., Assadpoor, E. (2014). Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Drying Technology, 32(5), 509-518.
  • [15] Farias‐Cervantes, V.S., Chávez‐Rodríguez, A., García‐Salcedo, P.A., García‐López, P.M., Casas‐Solís, J., Andrade‐González, I. (2018). Antimicrobial effect and in vitro release of anthocyanins from berries and Roselle obtained via microencapsulation by spray drying. Journal of Food Processing and Preservation, 42(10), e13713.
  • [16] Ersus, S., Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Engineering, 80(3), 805-812.
  • [17] AOAC (1995). Official methods of analysis (16th. ed.). Arlington, VA: Association of Official Analytical Chemists.
  • [18] Cai, Y.Z., Corke, H. (2000). Production and properties of spray‐dried Amaranthus betacyanin pigments. Journal of Food Science, 65(7), 1248-1252.
  • [19] Fazaeli, M., Emam-Djomeh, Z., Ashtari, A.K., Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667-675.
  • [20] Goula, A.M., Adamopoulos, K.G., Kazakis, N.A. (2004). Influence of spray drying conditions on tomato powder properties. Drying Technology, 22(5), 1129-1151.
  • [21] Santhalakshmy, S., Bosco, S.J.D., Francis, S., Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37-43.
  • [22] Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178.
  • [23] Lee, J., Durst, R.W., Wrolstad, R.E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC International, 88(5), 1269-1278.
  • [24] Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.
  • [25] Benzie, I.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • [26] Howard, L.R., Hager, T.J. (2007). Berry fruit phytochemicals. Food Science and Technology-New York-Marcel Dekker, 168, 73.
  • [27] Szajdek, A., Borowska, E.J. (2008). Bioactive compounds and health-promoting properties of berry fruits: a review. Plant Foods for Human Nutrition, 63(4), 147-156.
  • [28] Fu, L., Xu, B.T., Xu, X.R., Gan, R.Y., Zhang, Y., Xia, E.Q., Li, H.B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry, 129(2), 345-350.
  • [29] Balasundram, N., Sundram, K., Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203.
  • [30] Bakowska-Barczak, A.M., Kolodziejczyk, P.P. (2011). Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products, 34(2), 1301-1309.
  • [31] Stevenson, D., Scalzo, J. (2012). Anthocyanin composition and content of blueberries from around the world. Journal of Berry Research, 2(4), 179-189.
  • [32] He, J., Giusti, M.M. (2010). Anthocyanins: natural colorants with health-promoting properties. Annual Review of Food Science and Technology, 1, 163-187.
  • [33] Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M.E., Rodríguez, J.A., Galán-Vidal, C.A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859-871.
  • [34] Zou, Z., Xi, W., Hu, Y., Nie, C., Zhou, Z. (2016). Antioxidant activity of citrus fruits. Food Chemistry, 196, 885-896.
  • [35] Kha, T.C., Nguyen, M.H., Roach, P.D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering, 98(3), 385-392.
  • [36] Horuz, E., Altan, A., Maskan, M. (2012). Spray drying and process optimization of unclarified pomegranate (Punica granatum) juice. Drying Technology, 30(7), 787-798.
  • [37] Fang, Z., Bhandari, B. (2012). Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Research International, 48(2), 478-483.
  • [38] Daza, L.D., Fujita, A., Fávaro-Trindade, C.S., Rodrigues-Ract, J.N., Granato, D., Genovese, M.I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20-29.
  • [39] Tan, S.P., Tuyen, C.K., Parks, S.E., Stathopoulos, C.E., Roach, P.D. (2015). Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology, 281, 65-75.
  • [40] Vardin, H., Yasar, M. (2012). Optimisation of pomegranate (Punica granatum L.) juice spray‐drying as affected by temperature and maltodextrin content. International Journal of Food Science and Technology, 47(1), 167-176.
  • [41] Fang, Z., Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139-1147.
  • [42] Saikia, S., Mahnot, N.K., Mahanta, C.L. (2015). Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chemistry, 171, 144-152.
  • [43] Nunes, G.L., Boaventura, B.C.B., Pinto, S.S., Verruck, S., Murakami, F.S., Prudêncio, E.S., Amboni, R.D.D.M.C. (2015). Microencapsulation of freeze concentrated Ilex paraguariensis extract by spray drying. Journal of Food Engineering, 151, 60-68.
  • [44] Goula, A.M., Adamopoulos, K.G. (2010). A new technique for spray drying orange juice concentrate. Innovative Food Science and Emerging Technologies, 11(2), 342-351.
  • [45] Correia, R., Grace, M. H., Esposito, D., Lila, M. A. (2017). Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage. Food Chemistry, 235, 76-85.
  • [46] Can Karaca, A., Guzel, O., Ak, M.M. (2016). Effects of processing conditions and formulation on spray drying of sour cherry juice concentrate. Journal of The Science of Food and Agriculture, 96(2), 449-455.
  • [47] Flores, F.P., Singh, R.K., Kerr, W.L., Pegg, R.B., Kong, F. (2014). Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion. Food Chemistry, 153, 272-278.
  • [48] Flores, F.P., Singh, R.K., Kerr, W.L., Phillips, D.R., Kong, F. (2015). In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts. Food Chemistry, 168, 225-232.

Organik Yaban Mersini Ekstraktından Elde Edilen Biyoaktif Bileşiklerin Püskürtmeli Kurutmayla Enkapsülasyonu

Year 2022, Volume: 20 Issue: 1, 1 - 11, 03.04.2022
https://doi.org/10.24323/akademik-gida.1097801

Abstract

Bu çalışmada, püskürtmeli kurutma parametrelerinin organik yaban mersini ekstraktına etkileri incelenmiştir. Solvent ekstraksiyonu ile yaban mersininden yüksek miktarda biyoaktif bileşik ekstrakte edildi. Püskürtmeli kurutma koşullarının optimizasyonu için yanıt yüzey metodolojisi uygulandı. Besleme karışımının ekstrakt kütle yüzdesi (kuru bazda, 15-50%), hava giriş sıcaklığı (120-150°C) ve besleme karışımının katı madde miktarı (20-40 Brix) bağımsız işlem değişkenleridir. Operasyon verimliliği ve fenolik tutunum modelin yanıt değişkenleridir. Kaplama ajanı olarak maltodekstrin kullanıldı. Optimum ekstrakt kütle yüzdesi, sıcaklık ve besleme karışımının katı madde miktarı sırasıyla 19.51%, 120°C ve 20.03 Briks olarak belirlendi. Optimum şartlar altında yanıt değişkenlerinin maksimum seviyeleri %91.20 operasyon verimliliği ve %87.12 fenolik tutunum olarak bulundu. Biyoaktif bileşiklerin tutunumunda en önemli değişken ekstrakt kütle yüzdesi olarak bulundu. Enkapsüle edilmiş toz %3.19 nem içeriğine sahipti ve kuru tozun gramı başına 5.54 mg gallik asit eşdeğeri (GAE), 1.52 mg siyanidin-3-glukozit (C3G) ve 46.41 µmol Troloks eşdeğeri (TE) içeriyordu. Tozun DPPH serbest radikal yakalama aktivitesi değeri (EC50) 8.14 mg çözünür katı/mL olarak bulundu. Elde edilen biyoaktif toz muhtemel fonksiyonel gıda bileşenidir. Sonuç olarak, yaban mersini ekstraktı tozu püskürtmeli kurutmayla verimli şekilde üretilebilmiştir.

Project Number

2211/2210-C

References

  • [1] Jiménez-Aguilar, D.M., Ortega-Regules, A.E., Lozada-Ramírez, J.D., Pérez-Pérez, M.C.I., Vernon-Carter, E.J., Welti-Chanes, J. (2011). Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. Journal of Food Composition and Analysis, 24(6), 889-894.
  • [2] Araujo-Díaz, S.B., Leyva-Porras, C., Aguirre-Bañuelos, P., Álvarez-Salas, C., Saavedra-Leos, Z. (2017). Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydrate Polymers, 167, 317-325.
  • [3] Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673-24706.
  • [4] Han, X., Shen, T., Lou, H. (2007). Dietary polyphenols and their biological significance. International Journal of Molecular Sciences, 8(9), 950-988.
  • [5] FAO, (2018). Statistical data of FAO. Retrieved from: http://www.fao.org/faostat/en/#data/QC/ (Accessed 5 August 2018).
  • [6] Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Omar, A.K.M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426-436.
  • [7] Atacan, K., Yanık, D.K. (2017). Yaban mersini (Vaccinium corymbosum L.) suyu konsantresinin püskürtmeli kurutucuda kurutulması: Tepki yüzey yöntemiyle optimizasyon. Akademik Gıda, 15(2), 139-148.
  • [8] Ma, M., Dolan, K.D. (2011). Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by‐products. Journal of Food Science, 76(7), 156-164.
  • [9] Turan, F.T., Cengiz, A., Kahyaoglu, T. (2015). Evaluation of ultrasonic nozzle with spray-drying as a novel method for the microencapsulation of blueberry's bioactive compounds. Innovative Food Science and Emerging Technologies, 32, 136-145.
  • [10] Flores, F.P., Singh, R.K., Kong, F. (2014). Physical and storage properties of spray-dried blueberry pomace extract with whey protein isolate as wall material. Journal of Food Engineering, 137, 1-6.
  • [11] Fang, Z., Bhandari, B. (2010). Encapsulation of polyphenols–a review. Trends in Food Science and Technology, 21(10), 510-523.
  • [12] Tatar Turan, F., Cengiz, A., Sandıkçı, D., Dervisoglu, M., Kahyaoglu, T. (2016). Influence of an ultrasonic nozzle in spray‐drying and storage on the properties of blueberry powder and microcapsules. Journal of the Science of Food and Agriculture, 96(12), 4062-4076.
  • [13] da Rosa, J.R., Nunes, G.L., Motta, M.H., Fortes, J.P., Weis, G.C.C., Hecktheuer, L.H.R., da Rosa, C.S. (2019). Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocolloids, 89, 742-748.
  • [14] Mahdavi, S.A., Jafari, S.M., Ghorbani, M., Assadpoor, E. (2014). Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Drying Technology, 32(5), 509-518.
  • [15] Farias‐Cervantes, V.S., Chávez‐Rodríguez, A., García‐Salcedo, P.A., García‐López, P.M., Casas‐Solís, J., Andrade‐González, I. (2018). Antimicrobial effect and in vitro release of anthocyanins from berries and Roselle obtained via microencapsulation by spray drying. Journal of Food Processing and Preservation, 42(10), e13713.
  • [16] Ersus, S., Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Engineering, 80(3), 805-812.
  • [17] AOAC (1995). Official methods of analysis (16th. ed.). Arlington, VA: Association of Official Analytical Chemists.
  • [18] Cai, Y.Z., Corke, H. (2000). Production and properties of spray‐dried Amaranthus betacyanin pigments. Journal of Food Science, 65(7), 1248-1252.
  • [19] Fazaeli, M., Emam-Djomeh, Z., Ashtari, A.K., Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667-675.
  • [20] Goula, A.M., Adamopoulos, K.G., Kazakis, N.A. (2004). Influence of spray drying conditions on tomato powder properties. Drying Technology, 22(5), 1129-1151.
  • [21] Santhalakshmy, S., Bosco, S.J.D., Francis, S., Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37-43.
  • [22] Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178.
  • [23] Lee, J., Durst, R.W., Wrolstad, R.E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC International, 88(5), 1269-1278.
  • [24] Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.
  • [25] Benzie, I.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • [26] Howard, L.R., Hager, T.J. (2007). Berry fruit phytochemicals. Food Science and Technology-New York-Marcel Dekker, 168, 73.
  • [27] Szajdek, A., Borowska, E.J. (2008). Bioactive compounds and health-promoting properties of berry fruits: a review. Plant Foods for Human Nutrition, 63(4), 147-156.
  • [28] Fu, L., Xu, B.T., Xu, X.R., Gan, R.Y., Zhang, Y., Xia, E.Q., Li, H.B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry, 129(2), 345-350.
  • [29] Balasundram, N., Sundram, K., Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203.
  • [30] Bakowska-Barczak, A.M., Kolodziejczyk, P.P. (2011). Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products, 34(2), 1301-1309.
  • [31] Stevenson, D., Scalzo, J. (2012). Anthocyanin composition and content of blueberries from around the world. Journal of Berry Research, 2(4), 179-189.
  • [32] He, J., Giusti, M.M. (2010). Anthocyanins: natural colorants with health-promoting properties. Annual Review of Food Science and Technology, 1, 163-187.
  • [33] Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M.E., Rodríguez, J.A., Galán-Vidal, C.A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859-871.
  • [34] Zou, Z., Xi, W., Hu, Y., Nie, C., Zhou, Z. (2016). Antioxidant activity of citrus fruits. Food Chemistry, 196, 885-896.
  • [35] Kha, T.C., Nguyen, M.H., Roach, P.D. (2010). Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering, 98(3), 385-392.
  • [36] Horuz, E., Altan, A., Maskan, M. (2012). Spray drying and process optimization of unclarified pomegranate (Punica granatum) juice. Drying Technology, 30(7), 787-798.
  • [37] Fang, Z., Bhandari, B. (2012). Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Research International, 48(2), 478-483.
  • [38] Daza, L.D., Fujita, A., Fávaro-Trindade, C.S., Rodrigues-Ract, J.N., Granato, D., Genovese, M.I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20-29.
  • [39] Tan, S.P., Tuyen, C.K., Parks, S.E., Stathopoulos, C.E., Roach, P.D. (2015). Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology, 281, 65-75.
  • [40] Vardin, H., Yasar, M. (2012). Optimisation of pomegranate (Punica granatum L.) juice spray‐drying as affected by temperature and maltodextrin content. International Journal of Food Science and Technology, 47(1), 167-176.
  • [41] Fang, Z., Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139-1147.
  • [42] Saikia, S., Mahnot, N.K., Mahanta, C.L. (2015). Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chemistry, 171, 144-152.
  • [43] Nunes, G.L., Boaventura, B.C.B., Pinto, S.S., Verruck, S., Murakami, F.S., Prudêncio, E.S., Amboni, R.D.D.M.C. (2015). Microencapsulation of freeze concentrated Ilex paraguariensis extract by spray drying. Journal of Food Engineering, 151, 60-68.
  • [44] Goula, A.M., Adamopoulos, K.G. (2010). A new technique for spray drying orange juice concentrate. Innovative Food Science and Emerging Technologies, 11(2), 342-351.
  • [45] Correia, R., Grace, M. H., Esposito, D., Lila, M. A. (2017). Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage. Food Chemistry, 235, 76-85.
  • [46] Can Karaca, A., Guzel, O., Ak, M.M. (2016). Effects of processing conditions and formulation on spray drying of sour cherry juice concentrate. Journal of The Science of Food and Agriculture, 96(2), 449-455.
  • [47] Flores, F.P., Singh, R.K., Kerr, W.L., Pegg, R.B., Kong, F. (2014). Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion. Food Chemistry, 153, 272-278.
  • [48] Flores, F.P., Singh, R.K., Kerr, W.L., Phillips, D.R., Kong, F. (2015). In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts. Food Chemistry, 168, 225-232.
There are 48 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Sultan Can This is me 0000-0003-1142-6827

Fahrettin Göğüş This is me 0000-0002-8610-5297

Hüseyin Bozkurt This is me 0000-0003-4676-6354

Project Number 2211/2210-C
Publication Date April 3, 2022
Submission Date October 12, 2020
Published in Issue Year 2022 Volume: 20 Issue: 1

Cite

APA Can, S., Göğüş, F., & Bozkurt, H. (2022). Optimization of Spray Drying Encapsulation of Bioactive Compounds from Organic Blueberry Extract. Akademik Gıda, 20(1), 1-11. https://doi.org/10.24323/akademik-gida.1097801
AMA Can S, Göğüş F, Bozkurt H. Optimization of Spray Drying Encapsulation of Bioactive Compounds from Organic Blueberry Extract. Akademik Gıda. April 2022;20(1):1-11. doi:10.24323/akademik-gida.1097801
Chicago Can, Sultan, Fahrettin Göğüş, and Hüseyin Bozkurt. “Optimization of Spray Drying Encapsulation of Bioactive Compounds from Organic Blueberry Extract”. Akademik Gıda 20, no. 1 (April 2022): 1-11. https://doi.org/10.24323/akademik-gida.1097801.
EndNote Can S, Göğüş F, Bozkurt H (April 1, 2022) Optimization of Spray Drying Encapsulation of Bioactive Compounds from Organic Blueberry Extract. Akademik Gıda 20 1 1–11.
IEEE S. Can, F. Göğüş, and H. Bozkurt, “Optimization of Spray Drying Encapsulation of Bioactive Compounds from Organic Blueberry Extract”, Akademik Gıda, vol. 20, no. 1, pp. 1–11, 2022, doi: 10.24323/akademik-gida.1097801.
ISNAD Can, Sultan et al. “Optimization of Spray Drying Encapsulation of Bioactive Compounds from Organic Blueberry Extract”. Akademik Gıda 20/1 (April 2022), 1-11. https://doi.org/10.24323/akademik-gida.1097801.
JAMA Can S, Göğüş F, Bozkurt H. Optimization of Spray Drying Encapsulation of Bioactive Compounds from Organic Blueberry Extract. Akademik Gıda. 2022;20:1–11.
MLA Can, Sultan et al. “Optimization of Spray Drying Encapsulation of Bioactive Compounds from Organic Blueberry Extract”. Akademik Gıda, vol. 20, no. 1, 2022, pp. 1-11, doi:10.24323/akademik-gida.1097801.
Vancouver Can S, Göğüş F, Bozkurt H. Optimization of Spray Drying Encapsulation of Bioactive Compounds from Organic Blueberry Extract. Akademik Gıda. 2022;20(1):1-11.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).