Research Article
BibTex RIS Cite

Kardinal Üzümü, Napolyon Kirazı, Mürdüm Eriği, Kivi ve Şeftali Meyvelerinden Doğal Fermantasyonla Sirke Üretim Potansiyeli: Fizikokimyasal ve Duyusal Özellikler

Year 2022, Volume: 20 Issue: 1, 54 - 62, 03.04.2022
https://doi.org/10.24323/akademik-gida.1097836

Abstract

Bu çalışmada, sirke üzerine artan tüketici talebini karşılamak amacıyla farklı meyve kaynaklarından geleneksel yöntemle üretilen sirkelerin değerlendirilmesi amaçlanmıştır. Bu amaçla, Kardinal üzümü (KU), Napolyon kirazı (KR), mürdüm eriği (ER), kivi (KW) ve şeftali (SF) kullanılarak geleneksel yöntemle beş farklı meyve sirkesi üretilmiştir. Örneklerin bazı fizikokimyasal özellikleri (asetik asit içeriği, pH’sı, toplam çözünür kuru madde içeriği ve renk değerleri) ve duyusal özellikleri incelenmiştir. Sirke örneklerinin asetik asit içeriği %0.53-3.23 arasında belirlenmiş olup, pH değerleri ise 2.93-3.63 arasında tespit edilmiştir. En yüksek asetik asit içeriği KU sirkesinde gözlemlenirken, KR sirkesinin ise en düşük asetik asit içeriğine sahip olduğu belirlenmiştir. Bununla birlikte, örneklerin 2.50-3.70°Brix arasında toplam çözünür kuru madde içeriğine sahip olduğu belirlenmiştir. En düşük Brix değeri ER sirkesinde iken KU ve SF sirkelerinde en yüksek tespit edilmiştir. Renk profili analizi sonuçlarına göre, en parlak sirkeler KW, KU ve ER sirkeleri olmuş, örneklerin sarılık değeri 13.19-26.60 arasında bulunmuş ve en yüksek kırmızılık değeri ise 17.60 ile KR sirkesinde belirlenmiştir. Duyusal değerlendirme sonucuna göre örnekler arasında en yüksek genel izlenim skoru KW sirkesinde belirlenmiş olup bunu SF ve ER sirkeleri izlemiştir.

Thanks

Bu çalışmadaki bazı analizlerin gerçekleştirilmesine yardımcı olan Dr. Edibe Rabia ÖZKAN’a ve sirke üretiminde yardımlarını esirgemeyen Nigar ÖZTÜRK’e teşekkürlerimi sunarım.

References

  • [1] Bhat, S.V., Akhtar, R., Amin, T. (2014). An overview on the biological production of vinegar. International Journal of Fermented Foods, 3(2), 139-155.
  • [2] Alimentarius, C. (2000). Proposed draft revised regional standard for vinegar. Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, June 2000, Rome, Italy.
  • [3] Lynch, K.M., Zannini, E., Wilkinson, S., Daenen, L., Arendt, E.K. (2019). Physiology of acetic acid bacteria and their role in vinegar and fermented beverages. Comprehensive Reviews in Food Science and Food Safety, 18(3), 587-625.
  • [4] Wu, L.H., Lu, Z.M., Zhang, X.J., Wang, Z.M., Yu, Y.J., Shi, J.S., Xu, Z.H. (2017). Metagenomics reveals flavour metabolic network of cereal vinegar microbiota. Food Microbiology, 62, 23-31.
  • [5] Yun, J., Zhao, F., Zhang, W., Yan, H., Zhao, F., Ai, D. (2019). Monitoring the microbial community succession and diversity of Liangzhou fumigated vinegar during solid-state fermentation with next-generation sequencing. Annals of Microbiology, 69(3), 279-289.
  • [6] Bamforth, C.W. (2005). Vinegar. In: Food, Fermentation and Micro‐organisms, Edited by C.W. Bamforth, Blackwell Science, Kundli, India, 154-159.
  • [7] Morales, L.M., González, G.A., Casas, J.A., Troncoso, A.M. (2001). Multivariate analysis of commercial and laboratory produced Sherry wine vinegars: influence of acetification and aging. European Food Research and Technology, 212(6), 676-682.
  • [8] Jo, Y., Baek, J.Y., Jeong, I.Y., Jeong, Y.J., Yeo, S.H., Noh, B.S., Kwon, J.H. (2015). Physicochemical properties and volatile components of wine vinegars with high acidity based on fermentation stage and initial alcohol concentration. Food Science and Biotechnology, 24(2), 445-452.
  • [9] Tesfaye, W., Morales, M.L., Garcı́a-Parrilla, M.C., Troncoso, A.M. (2002). Wine vinegar: technology, authenticity and quality evaluation. Trends in Food Science & Technology, 13(1), 12-21.
  • [10] Al-Dalali, S., Zheng, F., Li, H., Huang, M., Chen, F. (2019). Characterization of volatile compounds in three commercial Chinese vinegars by SPME-GC-MS and GC-O. LWT-Food Science and Technology, 112, 108264.
  • [11] Bayram, Y., Özkan, K., Sagdıc, O. (2020). Bioactivity, physicochemical and antimicrobial properties of vinegar made from persimmon (Diospyros kaki) peels. Sigma Journal of Engineering and Natural Sciences, 38(3), 1643-1652.
  • [12] Vegas, C., Mateo, E., González, A., Jara, C., Guillamón, J.S., Poblet, M., Torija, M.J., Mas, A. (2010). Population dynamics of acetic acid bacteria during traditional wine vinegar production. International Journal of Food Microbiology. 138(1-2), 130-136.
  • [13] Chen, H., Chen, T., Giudici, P., Chen, F. (2016). Vinegar functions on health: constituents, sources, and formation mechanisms. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1124-1138.
  • [14] Ho, C.W., Lazim, A.M., Fazry, S., Zaki, U.K.H.H., Lim, S.J. (2017). Varieties, production, composition and health benefits of vinegars: a review. Food Chemistry, 221, 1621-1630.
  • [15] Arvaniti, O.S., Mitsonis, P., Siorokos, I., Dermishaj, E., Samaras, Y. (2019). The physicochemical properties and antioxidant capacities of commercial and homemade Greek vinegars. Acta Scientiarum Polonorum Technologia Alimentaria, 18(3), 225-234.
  • [16] Dai, J., Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352.
  • [17] Leeman, M., Östman, E., Björck, I. (2005). Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects. European Journal of Clinical Nutrition, 59(11), 1266-1271.
  • [18] Akarca, G., Tomar, O., Çağlar, A., İstek, Ö. (2020). Physicochemical and sensory quality properties of vinegar produced by traditional method from Persian mazafati date (Phoenix dactylifera L.). Avrupa Bilim ve Teknoloji Dergisi, 19, 429-434.
  • [19] Cho, K.M., Hwang, C.E., Joo, O.S. (2017). Change of physicochemical properties, phytochemical contents and biological activities during the vinegar fermentation of Elaeagnus multiflora fruit. Korean Journal of Food Preservation, 24(1), 125-133.
  • [20] Hafzan, Y., Saw, J.W., Fadzilah, I. (2017). Physicochemical properties, total phenolic content, and antioxidant capacity of homemade and commercial date (Phoenix dactylifera L.) vinegar. International Food Research Journal, 24(6), 2557-2562.
  • [21] Kawa-Rygielska, J., Adamenko, K., Kucharska, A.Z., Piórecki, N. (2018). Bioactive compounds in Cornelian cherry vinegars. Molecules, 23(379), 1-16.
  • [22] Selvanathan, Y., Masngut, N. (2020). Physicochemical properties, antioxidant activities, and sensory evaluation of pineapple peel biovinegar. IOP Conference Series: Materials Science and Engineering, 991(1), 1-11.
  • [23] Sengun, I.Y., Kilic, G., Ozturk, B. (2020). Screening physicochemical, microbiological and bioactive properties of fruit vinegars produced from various raw materials. Food Science and Biotechnology, 29(3), 401-408.
  • [24] Tomar, O., Akarca, G., İstek, Ö. (2020). Farklı yaban mersini türlerinden geleneksel yöntemle üretilen sirkenin bazı kalite özellikleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(4), 2595-2603.
  • [25] Greco, E., Cervellati, R., Litterio, M.L. (2013). Antioxidant capacity and total reducing power of balsamic and traditional balsamic vinegar from Modena and Reggio Emilia by conventional chemical assays. International Journal of Food Science & Technology, 48(1), 114-120.
  • [26] Ozturk, I., Caliskan, O., Tornuk, F., Ozcan, N., Yalcin, H, Baslar, M, Sagdic, O. (2015). Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT-Food Science and Technology, 63(1), 144-151.
  • [27] Kang, M., Ha, J.H., Lee, Y. (2020). Physicochemical properties, antioxidant activities and sensory characteristics of commercial gape vinegars during long-term storage. Food Science and Technology (Campinas), 40(4), 909-916.
  • [28] Gómez, M.L.M., Bellido, B.B., Tesfaye, W., Fernandez, R.M.C., Valencia, D., Fernandez-Pachón, M.S., García-Parrilla, M.C., González, A.M.T. (2006). Sensory evaluation of sherry vinegar: traditional compared to accelerated aging with oak chips. Journal of Food Science, 71(3), S238-S242.
  • [29] Turhan, E.Ü., Canbaş, A. (2016). Chemical and sensory properties of vinegar from Dimrit grape by submerged and surface method, Gıda/The Journal of Food, 41(1), 1-7.
  • [30] Kim, S.H., Cho, H.K., Shin, H.S. (2012). Physicochemical properties and antioxidant activities of commercial vinegar drinks in Korea. Food Science and Biotechnology, 21(6), 1729-1734.
  • [31] Štornik, A., Skok, B., Trček, J. (2016). Comparison of cultivable acetic acid bacterial microbiota in organic and conventional apple cider vinegar. Food Technology and Biotechnology, 54(1), 113-119.
  • [32] Anonim (2004). TSE Sirke – Tarım Kökenli Sıvılardan Elde Edilen Ürün TS 1880 EN 13188 - Tadil ICS: 01.040.67;67.220.20, Türk Standartları Enstitüsü Necatibey Cad. 112, Ankara.
  • [33] Reijenga, J., van Hoof, A., van Loon, A., Teunissen, B. (2013). Development of methods for the determination of pKa values. Analytical Chemistry Insights, 8, 53-71.
  • [34] Yang, H.S., Rho, J.O. (2012). The physiochemical characteristic and descriptive sensory evaluation of the blackberry fruit beverage. Korean Journal of Human Ecology, 21(2), 363-375.
  • [35] Cruz, M., Correia, A.C., Gonçalves, F., Jordão, A. (2018). Phenolic composition and total antioxidant capacity analysis of red wine vinegars commercialized in Portuguese market. Ciência e Técnica Vitivinícola, 33(2), 102-115.
  • [36] Marrufo-Curtido, A., Cejudo-Bastante, M., Durán-Guerrero, E., Castro-Mejías, R., Natera-Marín, R., Chinnici, F., García-Barroso, C. (2012). Characterization and differentiation of high quality vinegars by stir bar sorptive extraction coupled to gas chromatography-mass spectrometry (SBSE–GC–MS). LWT-Food Science and Technology, 47(2), 332-341.
  • [37] Chen, Y., Huang, Y., Bai, Y., Fu, C., Zhou, M., Gao, B., Wang, C., Li, D., Hu, Y., Xu, N. (2017). Effects of mixed cultures of Saccharomyces cerevisiae and Lactobacillus plantarum in alcoholic fermentation on the physicochemical and sensory properties of citrus vinegar. LWT-Food Science and Technology, 84, 753-763.
  • [38] Altunbağ, E., Zencir, E. (2018). Türk ve Akdeniz yemeklerinde sirke kullanımı (Use of vinegar in Turkish and Mediterranean food). Journal of Gastronomy, Hospitality, and Travel (JOGHAT), 1(2), 45-54.

Vinegar Production Potential of Cardinal Grape, Napoleon Cherry, Damson Plum, Kiwi, and Peach Fruits by Natural Fermentation: Physicochemical and Sensorial Properties

Year 2022, Volume: 20 Issue: 1, 54 - 62, 03.04.2022
https://doi.org/10.24323/akademik-gida.1097836

Abstract

Vinegars are produced from different fruit sources to meet their increasing consumer demand. In this study, five different fruit vinegars were produced by natural fermentation using Cardinal grape (KU), Napoleon cherry (KR), damson plum (ER), kiwi (KW), and peach (SF). Some physicochemical properties of vinegars such as their acetic acid content, pH, total soluble dry matter content, and color values and sensory characteristics were determined. The acetic acid content of fruit vinegars was between 0.53-3.23%, and their pH values were between 2.93-3.63. While the highest acetic acid content was found in KU vinegar, KR vinegar had the lowest acetic acid content. Besides, vinegars had a total soluble dry matter content between 2.50-3.70°Brix. While the lowest Brix value was determined in ER vinegar, KU and SF vinegars had the highest Brix value. Results of color profile analysis indicated that the brightest vinegars were KW, KU, and ER vinegars, and samples had a yellowness value between 13.19-26.60, and the highest redness value of 17.60 was found for KR vinegar. Based on the sensory evaluation test, the highest overall impression score among the samples was determined in KW vinegar, followed by SF and ER vinegars.

References

  • [1] Bhat, S.V., Akhtar, R., Amin, T. (2014). An overview on the biological production of vinegar. International Journal of Fermented Foods, 3(2), 139-155.
  • [2] Alimentarius, C. (2000). Proposed draft revised regional standard for vinegar. Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, June 2000, Rome, Italy.
  • [3] Lynch, K.M., Zannini, E., Wilkinson, S., Daenen, L., Arendt, E.K. (2019). Physiology of acetic acid bacteria and their role in vinegar and fermented beverages. Comprehensive Reviews in Food Science and Food Safety, 18(3), 587-625.
  • [4] Wu, L.H., Lu, Z.M., Zhang, X.J., Wang, Z.M., Yu, Y.J., Shi, J.S., Xu, Z.H. (2017). Metagenomics reveals flavour metabolic network of cereal vinegar microbiota. Food Microbiology, 62, 23-31.
  • [5] Yun, J., Zhao, F., Zhang, W., Yan, H., Zhao, F., Ai, D. (2019). Monitoring the microbial community succession and diversity of Liangzhou fumigated vinegar during solid-state fermentation with next-generation sequencing. Annals of Microbiology, 69(3), 279-289.
  • [6] Bamforth, C.W. (2005). Vinegar. In: Food, Fermentation and Micro‐organisms, Edited by C.W. Bamforth, Blackwell Science, Kundli, India, 154-159.
  • [7] Morales, L.M., González, G.A., Casas, J.A., Troncoso, A.M. (2001). Multivariate analysis of commercial and laboratory produced Sherry wine vinegars: influence of acetification and aging. European Food Research and Technology, 212(6), 676-682.
  • [8] Jo, Y., Baek, J.Y., Jeong, I.Y., Jeong, Y.J., Yeo, S.H., Noh, B.S., Kwon, J.H. (2015). Physicochemical properties and volatile components of wine vinegars with high acidity based on fermentation stage and initial alcohol concentration. Food Science and Biotechnology, 24(2), 445-452.
  • [9] Tesfaye, W., Morales, M.L., Garcı́a-Parrilla, M.C., Troncoso, A.M. (2002). Wine vinegar: technology, authenticity and quality evaluation. Trends in Food Science & Technology, 13(1), 12-21.
  • [10] Al-Dalali, S., Zheng, F., Li, H., Huang, M., Chen, F. (2019). Characterization of volatile compounds in three commercial Chinese vinegars by SPME-GC-MS and GC-O. LWT-Food Science and Technology, 112, 108264.
  • [11] Bayram, Y., Özkan, K., Sagdıc, O. (2020). Bioactivity, physicochemical and antimicrobial properties of vinegar made from persimmon (Diospyros kaki) peels. Sigma Journal of Engineering and Natural Sciences, 38(3), 1643-1652.
  • [12] Vegas, C., Mateo, E., González, A., Jara, C., Guillamón, J.S., Poblet, M., Torija, M.J., Mas, A. (2010). Population dynamics of acetic acid bacteria during traditional wine vinegar production. International Journal of Food Microbiology. 138(1-2), 130-136.
  • [13] Chen, H., Chen, T., Giudici, P., Chen, F. (2016). Vinegar functions on health: constituents, sources, and formation mechanisms. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1124-1138.
  • [14] Ho, C.W., Lazim, A.M., Fazry, S., Zaki, U.K.H.H., Lim, S.J. (2017). Varieties, production, composition and health benefits of vinegars: a review. Food Chemistry, 221, 1621-1630.
  • [15] Arvaniti, O.S., Mitsonis, P., Siorokos, I., Dermishaj, E., Samaras, Y. (2019). The physicochemical properties and antioxidant capacities of commercial and homemade Greek vinegars. Acta Scientiarum Polonorum Technologia Alimentaria, 18(3), 225-234.
  • [16] Dai, J., Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352.
  • [17] Leeman, M., Östman, E., Björck, I. (2005). Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects. European Journal of Clinical Nutrition, 59(11), 1266-1271.
  • [18] Akarca, G., Tomar, O., Çağlar, A., İstek, Ö. (2020). Physicochemical and sensory quality properties of vinegar produced by traditional method from Persian mazafati date (Phoenix dactylifera L.). Avrupa Bilim ve Teknoloji Dergisi, 19, 429-434.
  • [19] Cho, K.M., Hwang, C.E., Joo, O.S. (2017). Change of physicochemical properties, phytochemical contents and biological activities during the vinegar fermentation of Elaeagnus multiflora fruit. Korean Journal of Food Preservation, 24(1), 125-133.
  • [20] Hafzan, Y., Saw, J.W., Fadzilah, I. (2017). Physicochemical properties, total phenolic content, and antioxidant capacity of homemade and commercial date (Phoenix dactylifera L.) vinegar. International Food Research Journal, 24(6), 2557-2562.
  • [21] Kawa-Rygielska, J., Adamenko, K., Kucharska, A.Z., Piórecki, N. (2018). Bioactive compounds in Cornelian cherry vinegars. Molecules, 23(379), 1-16.
  • [22] Selvanathan, Y., Masngut, N. (2020). Physicochemical properties, antioxidant activities, and sensory evaluation of pineapple peel biovinegar. IOP Conference Series: Materials Science and Engineering, 991(1), 1-11.
  • [23] Sengun, I.Y., Kilic, G., Ozturk, B. (2020). Screening physicochemical, microbiological and bioactive properties of fruit vinegars produced from various raw materials. Food Science and Biotechnology, 29(3), 401-408.
  • [24] Tomar, O., Akarca, G., İstek, Ö. (2020). Farklı yaban mersini türlerinden geleneksel yöntemle üretilen sirkenin bazı kalite özellikleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(4), 2595-2603.
  • [25] Greco, E., Cervellati, R., Litterio, M.L. (2013). Antioxidant capacity and total reducing power of balsamic and traditional balsamic vinegar from Modena and Reggio Emilia by conventional chemical assays. International Journal of Food Science & Technology, 48(1), 114-120.
  • [26] Ozturk, I., Caliskan, O., Tornuk, F., Ozcan, N., Yalcin, H, Baslar, M, Sagdic, O. (2015). Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT-Food Science and Technology, 63(1), 144-151.
  • [27] Kang, M., Ha, J.H., Lee, Y. (2020). Physicochemical properties, antioxidant activities and sensory characteristics of commercial gape vinegars during long-term storage. Food Science and Technology (Campinas), 40(4), 909-916.
  • [28] Gómez, M.L.M., Bellido, B.B., Tesfaye, W., Fernandez, R.M.C., Valencia, D., Fernandez-Pachón, M.S., García-Parrilla, M.C., González, A.M.T. (2006). Sensory evaluation of sherry vinegar: traditional compared to accelerated aging with oak chips. Journal of Food Science, 71(3), S238-S242.
  • [29] Turhan, E.Ü., Canbaş, A. (2016). Chemical and sensory properties of vinegar from Dimrit grape by submerged and surface method, Gıda/The Journal of Food, 41(1), 1-7.
  • [30] Kim, S.H., Cho, H.K., Shin, H.S. (2012). Physicochemical properties and antioxidant activities of commercial vinegar drinks in Korea. Food Science and Biotechnology, 21(6), 1729-1734.
  • [31] Štornik, A., Skok, B., Trček, J. (2016). Comparison of cultivable acetic acid bacterial microbiota in organic and conventional apple cider vinegar. Food Technology and Biotechnology, 54(1), 113-119.
  • [32] Anonim (2004). TSE Sirke – Tarım Kökenli Sıvılardan Elde Edilen Ürün TS 1880 EN 13188 - Tadil ICS: 01.040.67;67.220.20, Türk Standartları Enstitüsü Necatibey Cad. 112, Ankara.
  • [33] Reijenga, J., van Hoof, A., van Loon, A., Teunissen, B. (2013). Development of methods for the determination of pKa values. Analytical Chemistry Insights, 8, 53-71.
  • [34] Yang, H.S., Rho, J.O. (2012). The physiochemical characteristic and descriptive sensory evaluation of the blackberry fruit beverage. Korean Journal of Human Ecology, 21(2), 363-375.
  • [35] Cruz, M., Correia, A.C., Gonçalves, F., Jordão, A. (2018). Phenolic composition and total antioxidant capacity analysis of red wine vinegars commercialized in Portuguese market. Ciência e Técnica Vitivinícola, 33(2), 102-115.
  • [36] Marrufo-Curtido, A., Cejudo-Bastante, M., Durán-Guerrero, E., Castro-Mejías, R., Natera-Marín, R., Chinnici, F., García-Barroso, C. (2012). Characterization and differentiation of high quality vinegars by stir bar sorptive extraction coupled to gas chromatography-mass spectrometry (SBSE–GC–MS). LWT-Food Science and Technology, 47(2), 332-341.
  • [37] Chen, Y., Huang, Y., Bai, Y., Fu, C., Zhou, M., Gao, B., Wang, C., Li, D., Hu, Y., Xu, N. (2017). Effects of mixed cultures of Saccharomyces cerevisiae and Lactobacillus plantarum in alcoholic fermentation on the physicochemical and sensory properties of citrus vinegar. LWT-Food Science and Technology, 84, 753-763.
  • [38] Altunbağ, E., Zencir, E. (2018). Türk ve Akdeniz yemeklerinde sirke kullanımı (Use of vinegar in Turkish and Mediterranean food). Journal of Gastronomy, Hospitality, and Travel (JOGHAT), 1(2), 45-54.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Papers
Authors

Hale İnci Öztürk This is me 0000-0001-8334-0403

Publication Date April 3, 2022
Submission Date March 13, 2021
Published in Issue Year 2022 Volume: 20 Issue: 1

Cite

APA Öztürk, H. İ. (2022). Kardinal Üzümü, Napolyon Kirazı, Mürdüm Eriği, Kivi ve Şeftali Meyvelerinden Doğal Fermantasyonla Sirke Üretim Potansiyeli: Fizikokimyasal ve Duyusal Özellikler. Akademik Gıda, 20(1), 54-62. https://doi.org/10.24323/akademik-gida.1097836
AMA Öztürk Hİ. Kardinal Üzümü, Napolyon Kirazı, Mürdüm Eriği, Kivi ve Şeftali Meyvelerinden Doğal Fermantasyonla Sirke Üretim Potansiyeli: Fizikokimyasal ve Duyusal Özellikler. Akademik Gıda. April 2022;20(1):54-62. doi:10.24323/akademik-gida.1097836
Chicago Öztürk, Hale İnci. “Kardinal Üzümü, Napolyon Kirazı, Mürdüm Eriği, Kivi Ve Şeftali Meyvelerinden Doğal Fermantasyonla Sirke Üretim Potansiyeli: Fizikokimyasal Ve Duyusal Özellikler”. Akademik Gıda 20, no. 1 (April 2022): 54-62. https://doi.org/10.24323/akademik-gida.1097836.
EndNote Öztürk Hİ (April 1, 2022) Kardinal Üzümü, Napolyon Kirazı, Mürdüm Eriği, Kivi ve Şeftali Meyvelerinden Doğal Fermantasyonla Sirke Üretim Potansiyeli: Fizikokimyasal ve Duyusal Özellikler. Akademik Gıda 20 1 54–62.
IEEE H. İ. Öztürk, “Kardinal Üzümü, Napolyon Kirazı, Mürdüm Eriği, Kivi ve Şeftali Meyvelerinden Doğal Fermantasyonla Sirke Üretim Potansiyeli: Fizikokimyasal ve Duyusal Özellikler”, Akademik Gıda, vol. 20, no. 1, pp. 54–62, 2022, doi: 10.24323/akademik-gida.1097836.
ISNAD Öztürk, Hale İnci. “Kardinal Üzümü, Napolyon Kirazı, Mürdüm Eriği, Kivi Ve Şeftali Meyvelerinden Doğal Fermantasyonla Sirke Üretim Potansiyeli: Fizikokimyasal Ve Duyusal Özellikler”. Akademik Gıda 20/1 (April 2022), 54-62. https://doi.org/10.24323/akademik-gida.1097836.
JAMA Öztürk Hİ. Kardinal Üzümü, Napolyon Kirazı, Mürdüm Eriği, Kivi ve Şeftali Meyvelerinden Doğal Fermantasyonla Sirke Üretim Potansiyeli: Fizikokimyasal ve Duyusal Özellikler. Akademik Gıda. 2022;20:54–62.
MLA Öztürk, Hale İnci. “Kardinal Üzümü, Napolyon Kirazı, Mürdüm Eriği, Kivi Ve Şeftali Meyvelerinden Doğal Fermantasyonla Sirke Üretim Potansiyeli: Fizikokimyasal Ve Duyusal Özellikler”. Akademik Gıda, vol. 20, no. 1, 2022, pp. 54-62, doi:10.24323/akademik-gida.1097836.
Vancouver Öztürk Hİ. Kardinal Üzümü, Napolyon Kirazı, Mürdüm Eriği, Kivi ve Şeftali Meyvelerinden Doğal Fermantasyonla Sirke Üretim Potansiyeli: Fizikokimyasal ve Duyusal Özellikler. Akademik Gıda. 2022;20(1):54-62.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).