Review
BibTex RIS Cite

Laktik Asit Bakterileri Tarafından Üretilen Ekzopolisakkaritler ve Terapötik Etkileri

Year 2022, Volume: 20 Issue: 4, 412 - 429, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224359

Abstract

Ekzopolisakaritler, tekrarlanan şeker birimlerinin glikozidik bağ ile bir araya gelmesi ile oluşmuş polimerler olup çok çeşitli mikroorganizma, bitki ve hayvan tarafından üretilebilmektedir. En önemli üreticilerinden biri laktik asit bakterileridir (LAB). Bu polimerler sentezlendikleri hücreye kovalent bağlarla bağlı bulunabileceği gibi, ortama salgılanarak hücreye elektrostatik kuvvetle zayıf bir biçimde de bağlı olabilir. Bulundukları hücreyi düşük su aktivitesi, ozmotik stres, bakteriyofajlar, toksik bileşikler vb. durumlara karşı korumaktadırlar. Sentez mekanizması da dahil olmak üzere ekzopolisakkaritler arasında içerdikleri şeker biriminin çeşit ve sayısı, molekül ağırlığı, yan zincirlerin varlığı, yükü gibi özelliklerle çok çeşitli farklılıklar gözlemlenir ve bu durum çeşitli fonksiyonel özellikte benzersiz yapıda ekzopolisakkaritlerin oluşumunu sağlar. LAB tarafından üretilen ekzopolisakkaritler toksik olmayışı ve biyo-bozunur özelliği başta olmak üzere tekstürel yapı ve organoleptik kaliteyi olumlu yönde etkilediğinden gıda sistemlerinde çok yaygın bir kullanım alanı bulmuştur. Günümüzde ekzopolisakkaritlerin teknolojik özelliklerinin yanı sıra çeşitli çalışmalar ışığında antioksidan, anti-tümör, prebiyotik, yara iyileştirici, anti diyabetik ve kolesterol seviyesini düzenleyici gibi birçok biyolojik fonksiyonu ortaya çıkarılmıştır. Bu derlemede literatürde yer alan çalışmalar eşliğinde ekzopolisakaritlerin yapısı ve sağlık üzerine bazı etkileri incelenmiştir.

References

  • [1] Zapaśnik, A., Sokołowska, B., Bryła, M. (2022). Role of lactic acid bacteria in food preservation and safety. Foods, 11(9), 1283.
  • [2] Mathur, H., Beresford, T.P., Cotter, P.D. (2020). Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients, 12(6), 1679.
  • [3] Prete, R., Alam, M.K., Perpetuini, G., Perla, C., Pittia, P., Corsetti, A. (2021). Lactic acid bacteria exopolysaccharides producers: A sustainable tool for functional foods. Foods, 10(7), 1653.
  • [4] Tiwari, S., Kavitake, D., Devi, P.B., Shetty, P.H. (2021). Bacterial exopolysaccharides for improvement of technological, functional and rheological properties of yoghurt. International Journal of Biological Macromolecules, 183, 1585-1595.
  • [5] Daba, G.M., Elnahas, M.O., Elkhateeb, W. A. (2021). Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. International Journal of Biological Macromolecules, 173, 79-89.
  • [6] Lynch, K.M., Zannini, E., Coffey, A., Arendt, E.K. (2018). Lactic acid bacteria exopolysaccharides in foods and beverages: Isolation, properties, characterization, and health benefits. Annual Review of Food Science and Technology, 9, 155-176.
  • [7] Zhou, Y., Cui, Y., Qu, X. (2019). Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydrate polymers, 207, 317-332.
  • [8] Sørensen, H. M., Rochfort, K.D., Maye, S., MacLeod, G., Brabazon, D., Loscher, C., Freeland, B. (2022). Exopolysaccharides of lactic acid bacteria: Production, purification and health benefits towards functional food. Nutrients, 14(14), 2938.
  • [9] Casillo, A., Lanzetta, R., Parrilli, M., Corsaro, M.M. (2018). Exopolysaccharides from marine and marine extremophilic bacteria: Structures, properties, ecological roles and applications. Marine Drugs, 16(2), 69.
  • [10] Ates, O. (2015). Systems biology of microbial exopolysaccharides production. Frontiers in Bioengineering and Biotechnology, 3, 200.
  • [11] Sutherland, IW. (2007). Bacterial exopolysaccharides. In: Kamerling JP, Editor. Comprehensive Glycoscience. Oxford: Elsevier, 521–57.
  • [12] Badel, S., Bernardi, T., Michaud, P. (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advances, 29(1), 54-66.
  • [13] Zeidan, A.A., Poulsen, V.K., Janzen, T., Buldo, P., Derkx, P.M., Øregaard, G., Neves, A.R. (2017). Polysaccharide production by lactic acid bacteria: From genes to industrial applications. FEMS Microbiology Reviews, 41(Supp_1), S168-S200.
  • [14] Sutherland, I.W. (2001). Microbial polysaccharides from gram-negative bacteria. International Dairy Journal, 11(9), 663-674.
  • [15] Welman, A.D., Maddox, I.S. (2003). Exopolysaccharides from lactic acid bacteria: Perspectives and Challenges. Trends In Biotechnology, 21(6), 269-274.
  • [16] Ismail, B., Nampoothiri, K.M. (2010). Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Archives of Microbiology, 192(12), 1049-1057.
  • [17] Dilna, S.V., Surya, H., Aswathy, R.G., Varsha, K.K., Sakthikumar, D.N., Pandey, A., Nampoothiri, K.M. (2015). Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT-Food Science and Technology, 64(2), 1179-1186.
  • [18] Jurášková, D., Ribeiro, S.C., Silva, C.C. (2022). Exopolysaccharides produced by lactic acid bacteria: From biosynthesis to health-promoting properties. Foods, 11(2), 156.
  • [19] Dertli, E., Mercan, E., Arıcı, M., Yılmaz, M.T., Sağdıç, O. (2016). Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT-Food Science And Technology, 71, 116-124.
  • [20] Kanmani, P., Albarracin, L., Kobayashi, H., Lida, H., Komatsu, R., Kober, A.H., Ohtsubo, W.I., Suda, Y., Aso, H., Makino, S., Kano, H., Saito, T., Villena, J., Kitazawa, H. (2018). Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells. Molecular İmmunology, 93, 253-265.
  • [21] Nachtigall, C., Vogel, C., Rohm, H., Jaros, D. (2020). How capsular exopolysaccharides affect cell surface properties of lactic acid bacteria. Microorganisms, 8(12), 1904.
  • [22] Yang, Z., Li, S., Zhang, X., Zeng, X., Li, D., Zhao, Y., Zhang, J. (2010). Capsular and slime-polysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut: potential application in fermented milk products. Journal Of Bioscience And Bioengineering, 110(1), 53-57.
  • [23] Freitas, F., Alves, V.D., Reis, M.A., Crespo, J.G., Coelhoso, I.M. (2014). Microbial polysaccharide‐based membranes: Current and future applications. Journal of Applied Polymer Science, 131(6), 40047.
  • [24] Harutoshi, T. (2013). Exopolysaccharides of lactic acid bacteria for food and colon health applications. In Lactic acid bacteria-R & D for food, health and livestock purposes. IntechOpen.
  • [25] Karaca, H., Dinçer, E., Kıvanç, M. (2010). Metabolik mühendisliğinde laktik asit bakterileri. Akademik Gıda, 8(1), 32-38.
  • [26] Kajala, I., Shi, Q., Nyyssölä, A., Maina, N.H., Hou, Y., Katina, K., Tenkanen, M., Juvonen, R. (2015). Cloning and characterization of a Weissella confusa dextransucrase and its application in high fibre baking. Plos One, 10(1), E0116418.
  • [27] Ahmad, N.H., Mustafa, S., Che Man, Y.B. (2015). Microbial polysaccharides and their modification approaches: A review. International Journal Of Food Properties, 18(2), 332-347.
  • [28] Delvart, A., Moreau, C., Cathala, B. (2022). Dextrans and dextran derivatives as polyelectrolytes in layer-by-layer processing materials–A review. Carbohydrate Polymers, 119700.
  • [29] Patel, A., Prajapati, J.B., Holst, O., Ljungh, A. (2014). Determining probiotic potential of exopolysaccharide producing lactic acid bacteria isolated from vegetables and traditional Indian fermented food products. Food Bioscience, 5, 27-33.
  • [30] Ryan, P.M., Ross, R.P., Fitzgerald, G.F., Caplice, N.M., Stanton, C. (2015). Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food & Function, 6(3), 679-693.
  • [31] Zannini, E., Waters, D.M., Coffey, A., Arendt, E.K. (2016). Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology, 100(3), 1121-1135.
  • [32] Kim, K., Lee, G., Thanh, H.D., Kim, J.H., Konkit, M., Yoon, S., Park, M., Yang, S., Park, E., Kim, W. (2018). Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response. Journal Of Dairy Science, 101(7), 5702-5712.
  • [33] Abid, Y., Casillo, A., Gharsallah, H., Joulak, I., Lanzetta, R., Corsaro, M.M., Attia, H., Azabou, S. (2018). Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. International Journal Of Biological Macromolecules, 108, 719-728.
  • [34] Bengoa, A.A., Llamas, M.G., Iraporda, C., Dueñas, M.T., Abraham, A.G., Garrote, G.L. (2018). Impact of growth temperature on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from kefir grains. Food Microbiology, 69, 212-218.
  • [35] Tsuda, H., Miyamoto, T. (2010). Production of exopolysaccharide by Lactobacillus plantarum and the prebiotic activity of the exopolysaccharide. Food Science and Technology Research, 16(1), 87-92.
  • [36] Saad, N., Delattre, C., Urdaci, M., Schmitter, J.M., Bressollier, P. (2013). An overview of the last advances in probiotic and prebiotic field. LWT-Food Science and Technology, 50(1), 1-16.
  • [37] Dal Bello, F., Walter, J., Hertel, C., Hammes, W.P. (2001). In vitro study of prebiotic properties of levan-type exopolysaccharides from Lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Systematic and Applied Microbiology, 24(2), 232-237.
  • [38] O'Connor, E.B., Barrett, E., Fitzgerald, G., Hill, C., Stanton, C., Ross, R.P. (2006). Production of vitamins, exopolysaccharides and bacteriocins by probiotic bacteria. in probiotic dairy products, A. Tamime (Ed.) 167–194.
  • [39] Das, D., Baruah, R., Goyal, A. (2014). A food additive with prebiotic properties of an α-d-glucan from Lactobacillus plantarum DM5. International Journal of Biological Macromolecules, 69, 20-26.
  • [40] Yılmaz-Ersan, L., Özcan, T., Akpınar-Bayizit, A., Delikanlı, B. (2016). Bifidojenik faktör olarak laktoz türevlerinin önemi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30(2), 79-90.
  • [41] Hongpattarakere, T., Cherntong, N., Wichienchot, S., Kolida, S., Rastall, R.A. (2012). In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydrate Polymers, 87(1), 846-852.
  • [42] Caggianiello, G., Kleerebezem, M., Spano, G. (2016). Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Applied Microbiology and Biotechnology, 100(9), 3877-3886.
  • [43] Gopal, P.K., Sullivan, P.A., Smart, J.B. (2001). Utilisation of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20. International Dairy Journal, 11(1-2), 19-25.
  • [44] Kaplan, H., Hutkins, R.W. (2003). Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195. Applied and Environmental Microbiology, 69(4), 2217-2222.
  • [45] Huebner, J., Wehling, R.L., Hutkins, R.W. (2007). Functional activity of commercial prebiotics. International Dairy Journal, 17(7), 770-775.
  • [46] Kekkonen, R., Ahlroos, T., Suomalainen, T., Tynkkynen, S., Poussa, T., Nevala, R., Korpela, R. (2007). A combination of galacto-oligosaccharides and Lactobacillus GG increases Bifidobacteria to a greater extent than Lactobacillus GG on its own. Milchwissenschaft, 62(3), 326-330.
  • [47] Lebeer, S., Verhoeven, T.L., Perea Vélez, M., Vanderleyden, J., De Keersmaecker, S.C. (2007). Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Applied and Environmental Microbiology, 73(21), 6768-6775.
  • [48] Salazar, N., Ruas-Madiedo, P., Kolida, S., Collins, M., Rastall, R., Gibson, G., Clara, G. (2009). Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures. International Journal Of Food Microbiology, 135(3), 260-267.
  • [49] Fanning, S., Hall, L. J., Cronin, M., Zomer, A., Macsharry, J., Goulding, D., Motherway, M., O., Shanahan, F., Nally, K., Dougan, G. Van Sinderen, D. (2012). Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proceedings of The National Academy of Sciences, 109(6), 2108-2113.
  • [50] Hidalgo-Cantabrana, C., López, P., Gueimonde, M., De Los Reyes-Gavilán, C.G., Suárez, A., Margolles, A., Ruas-Madiedo, P. (2012). Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics and Antimicrobial Proteins, 4(4), 227-237.
  • [51] Yasuda, E., Serata, M., Sako, T. (2008). Suppressive effect on activation of macrophages by Lactobacillus casei strain shirota genes determining the synthesis of cell wall-associated polysaccharides. Applied and Environmental Microbiology, 74, 4746-4755 . [52] Bleau, C. 1., Monges, A., Rashidan, K., Laverdure, J. P., Lacroix, M., Van Calsteren, M.R., Millette, M., Savard, R., Lamontagne, L. (2010). Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW‐9595M increase IL‐10 production by macrophages. Journal of Applied Microbiology, 108(2), 666-675.
  • [53] Remus, D.M., Van Kranenburg, R., Van Swam, I.I., Taverne, N., Bongers, R.S., Wels, M., Wells, J., M., Bron, P., A., Kleerebezem, M. (2012). Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling. Microbial Cell Factories, 11(1), 1-10.
  • [54] Zhou, X., Zhang, D., Qi, W., Hong, T., Xiong, T., Wu, T., Geng, F., Xie, M., Nie, S. (2021). Exopolysaccharides from Lactobacillus plantarum NCU116 facilitate intestinal homeostasis by modulating intestinal epithelial regeneration and microbiota. Journal of Agricultural and Food Chemistry, 69(28), 7863-7873.
  • [55] Chey, W.D., Kurlander, J., Eswaran, S. (2015). Irritable bowel syndrome: A clinical review. Jama, 313(9), 949-958.
  • [56] Adriani, A., Ribaldone, D.G., Astegiano, M., Durazzo, M., Saracco, G.M., Pellicano, R. (2018). Irritable bowel syndrome: The clinical approach. Panminerva Medica, 60(4), 213-222.
  • [57] Camilleri, M. (2018). Management options for irritable bowel syndrome. In Mayo Clinic Proceedings (Vol. 93, No. 12, Pp. 1858-1872). Elsevier.
  • [58] Kaur, C., Kapoor, H.C. (2001). Antioxidants in fruits and vegetables-The millennium’s health. International Journal of Food Science & Technology, 36(7), 703-725.
  • [59] Xu, R., Shang, N., Li, P. (2011). In vitro and ın vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. Anaerobe, 17(5), 226-231.
  • [60] Karabulut, H., Gülay, M.Ş. (2016). Serbest radikaller. Mehmet Akif Ersoy University Journal Of Health Sciences Institute, 4(1), 50-59.
  • [61] Finkel, T., Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239-247.
  • [62] Melov, S., Ravenscroft, J., Malik, S., Gill, M.S., Walker, D.W., Clayton, P.E., Wallace, D.E., Malfroy, B., Doctrow, S., R., Lithgow, G.J. (2000). Extension of life-span with superoxide dismutase/catalase mimetics. Science, 289(5484), 1567-1569.
  • [63] Liu, C.F., Tseng, K.C., Chiang, S.S., Lee, B.H., Hsu, W.H., Pan, T.M. (2011). Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. Journal of The Science of Food and Agriculture, 91(12), 2284-2291.
  • [64] Pan, D., Mei, X. (2010). Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohydrate Polymers, 80(3), 908-914.
  • [65] Zhang, L., Liu, C., Li, D., Zhao, Y., Zhang, X., Zeng, X., Yang, Z., Li, S. (2013). Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. International Journal of Biological Macromolecules, 54, 270-275.
  • [66] Seo, B.J., Bajpai, V.K., Rather, I.A., Park, Y.H. (2015). Partially purified exopolysaccharide from Lactobacillus plantarum YML009 with total phenolic content, antioxidant and free radical scavenging efficacy. Indian Journal of Pharmaceutical Education and Research, 49(4), 282-292.
  • [67] Ou, B., Huang, D., Hampsch-Woodill, M., Flanagan, J.A., Deemer, E.K. (2002). Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. Journal of Agricultural and Food Chemistry, 50(11), 3122-3128.
  • [68] Koca, N., Karadeniz, F. (2003). Serbest radikal oluşum mekanizmaları ve vücuttaki antioksidan savunma sistemleri. Gıda Mühendisliği Dergisi, 16, 32-37.
  • [69] Karabulut, H., Gülay, M.Ş. (2016). Antioksidanlar. Veterinary Journal of Mehmet Akif Ersoy University, 1(1), 65-76.
  • [70] Wang, C.L., Huang, T.H., Liang, T.W., Fang, C.Y., Wang, S.L. (2011). Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023. New Biotechnology, 28(6), 559-565.
  • [71] Sevim, D. (2011). Antioksidanlar ve Zeytinyağı. Zeytin Bilimi, 2(1), 43-47.
  • [72] Valentão, P., Fernandes, E., Carvalho, F., Andrade, P.B., Seabra, R.M., Bastos, M.L. (2002). Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorous acid. Journal of Agricultural and Food Chemistry, 50(17), 4989-4993.
  • [73] Li, W., Ji, J., Chen, X., Jiang, M., Rui, X., Dong, M. (2014). Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydrate Polymers, 15(2), 351-359.
  • [74] Xing, J., Wang, G., Zhang, Q., Liu, X., Gu, Z., Zhang, H., Chen, Y.Q., Chen, W. (2015). Determining antioxidant activities of Lactobacilli cell-free supernatants by cellular antioxidant assay: A comparison with traditional methods. Plos One, 10(3), E0119058.
  • [75] Liu, C.F., Hu, C.L., Chiang, S.S., Tseng, K.C., Yu, R.C., Pan, T.M. (2009). Beneficial preventive effects of gastric mucosal lesion for soy− skim milk fermented by lactic acid bacteria. Journal of Agricultural and Food Chemistry, 57(10), 4433-4438.
  • [76] Wang, T., Jonsdottir, R., Ólafsdóttir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chemistry, 116(1), 240-248.
  • [77] Lin, C., Wang, C., Chang, S., Inbaraj, B.S., Chen, B. (2009). Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. International Journal of Biological Macromolecules, 45(2), 146–151.
  • [78] Zhang, Z., Liu, Z., Tao, X., Wei, H. (2016). Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities. Carbohydrate Polymers, 153, 25–33.
  • [79] Adesulu-Dahunsi, A.T., Sanni, A.I., Jeyaram, K. (2018). Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT, 87, 432-442.
  • [80] Sirin, S., Aslim, B. (2020). Characterization of lactic acid bacteria derived exopolysaccharides for use as a defined neuroprotective agent against amyloid beta1–42-induced apoptosis in SH-SY5Y cells. Scientific Reports, 10(1), 1-18.
  • [81] Min, W.H., Fang, X.B., Wu, T., Fang, L., Liu, C.L., Wang, J. (2019). Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103. Journal of bioscience and bioengineering, 127(6), 758-766.
  • [82] Milardović, S., Iveković, D., Grabarić, B.S. (2006). A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry, 68(2), 175-180.
  • [83] Liu, C., Wang, C., Xu, Z., Wang, Y. (2007). Isolation, chemical characterization and antioxidant activities of two polysaccharide from the gel and the skin of Aloe barbadensis Miller irrigated with sea water, Process Biochemistry, 42(6), 961–970.
  • [84] Peng, X., Xiong, Y.L., Kong, B. (2009). Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chemistry, 113(1), 196-201.
  • [85] Huang, S.Q., Ding, S., Fan, L. (2012). Antioxidant activities of five polysaccharides from Inonotus obliquus. International Journal of Biological Macromolecules, 50(5), 1183-1187.
  • [86] Özcan, O., Erdal, H., Çakırca, G., Yönden, Z. (2015). Oksidatif stres ve hücre içi lipit, protein ve DNA yapıları üzerine etkileri. Journal of Clinical and Experimental Investigations, 6(3), 331-336.
  • [87] Xu, X., Qiao, Y., Peng, Q., Shi, B., Dia, V. P. (2022). Antioxidant and immunomodulatory properties of partially purified exopolysaccharide from Lactobacillus casei isolated from Chinese Northeast Sauerkraut. Immunological Investigations, 51(4), 748-765.
  • [88] Adesulu-Dahunsi, A.T., Sanni, A.I., Jeyaram, K. (2018). Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT, 87, 432-442.
  • [89] Li, S., Shah, N.P. (2014). Antioxidant and antibacterial activities of sulfatedpolysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC1275. Food Chemistry, 165, 262–270.
  • [90] Jiang, B., Wang, L., Zhu, M., Wu, S., Wang, X., Li, D., Liu, C., Feng, Z., Tian, B. (2021). Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system. LWT, 147, 111617.
  • [91] Huang, D., Ou, B., Prior, R.L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural And Food Chemistry, 53(6), 1841-1856.
  • [92] Xu, R., Shang, N., Li, P. (2011). In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. European Food Research and Technology, 232, 231-241 17(5), 226-231.
  • [93] Kim, D.Y., Shin, W.S. (2015). Unique characteristics of self-assembly of bovine serum albumin and fucoidan, an anionic sulfated polysaccharide, under various aqueous environments. Food Hydrocolloids, 44, 471-477.
  • [94] Li, W., Tang, W., Ji, J., Xia, X., Rui, X., Chen, X., Jiang, M., Zhou, J., Dong, M. (2015). Characterization of a novel polysaccharide with anti-colon cancer activity from Lactobacillus helveticus MB2-1. Carbohydrate Research, 411, 6-14.
  • [95] Karunanithi, S., Levi, L. (2018). High-fat diet and colorectal cancer: Myths and facts. Future Oncology, 14(6), 493-495.
  • [96] El-Deeb, N.M., Yassin, A.M., Al-Madboly, L.A., El-Hawiet, A. (2018). A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, La-Eps-20079, molecularly regulates both apoptotic and Nf-Κb inflammatory pathways in human colon cancer. Microbial Cell Factories, 17(1), 1-15.
  • [97] Wu, J., Zhang, Y., Ye, L., Wang, C. (2021). The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: A review. Carbohydrate polymers, 253, 117308.
  • [98] Pavlopoulou, A., Spandidos, D.A., Michalopoulos, I. (2015). Human cancer databases. Oncology Reports, 33(1), 3-18.
  • [99] Anonim. (2016). Kanser Nedir? Türk Tıbbi Onkoloji Derneği. https://www.kanser.org/saglik/toplum/sayfa/kanser-nedir
  • [100] Wang, K., Li, W., Rui, X., Chen, X., Jiang, M., Dong, M. (2014). Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. International Journal of Biological Macromolecules, 63, 133– 139.
  • [101] Zhao, Q., Xie, B., Yan, J., Zhao, F., Xiao, J., Yao, L., Zhao, B., Huang, Y. (2012). In vitro antioxidant and antitumor activities of polysaccharides extracted from Asparagus officinalis. Carbohydrate Polymers, 87(1), 392-396.
  • [102] Gunnarsson, H., Ekholm, A., Olsson, L.I. (2013). Emergency presentation and socioeconomic status in colon cancer. Ejso, 39, 831-836.
  • [103] Jiang, X., Zhang, Z., Chen, Y., Cui, Z., Shi, L. (2014). Structural elucidation and in vitro antitumor activity of a novel oligosaccharide from Bombyx batryticatus. Carbohydrate Polymers, 103, 434-441.
  • [104] Choi, S.S., Kim, Y., Han, K.S., You, S., Oh, S., Kim, S.H. (2006). Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress ın vitro. Letters in Applied Microbiology, 42(5), 452-458.
  • [105] Ewaschuk, J.B., Walker, J.W., Diaz, H., Madsen, K.L. (2006). Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo ın mice. The Journal of Nutrition, 136(6), 1483-1487.
  • [106] Haghshenas, B., Nami, Y., Haghshenas, M., Abdullah, N., Rosli, R., Radiah, D., Yari Khosroushahi, A. (2015). Bioactivity characterization of Lactobacillus strains isolated from dairy products. Microbiologyopen, 4(5), 803-813.
  • [107] Rajoka, M.S.R., Jin, M., Haobin, Z., Li, Q., Shao, D., Jiang, C., Huang, Q., Yang, H., Shi, J., Hussain, N. (2018). Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk. Lwt, 89, 638-647.
  • [108] Vinderola, G., Perdigón, G., Duarte, J., Farnworth, E., Matar, C. (2006). Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine, 36(5-6), 254-260.
  • [109] Patten, D.A., Leivers, S., Chadha, M.J., Maqsood, M., Humphreys, P.N., Laws, A.P., Collett, A. (2014). The structure and immunomodulatory activity on intestinal epithelial cells of the epss isolated from Lactobacillus helveticus sp. rosyjski and Lactobacillus acidophilus sp. 5e2. Carbohydrate Research, 384, 119-127.
  • [110] Who. (2017). Cardiovascular diseases (Cvds). Http://Www.Who.İnt/En/Newsroom/ Fact-Sheets/Detail/Cardiovascular-Diseases-(Cvds), (Ağustos 2018).
  • [111] Ahire, J.J., Bhat, A.A., Thakare, J.M., Pawar, P.B., Zope, D.G., Jain, R.M., Chaudhari, B.L. (2012). Cholesterol assimilation and biotransformation by Lactobacillus helveticus. Biotechnology Letters, 34(1), 103-107.
  • [112] Tsai, C.C., Lin, P.P., Hsieh, Y.M., Zhang, Z.Y., Wu, H.C., Huang, C.C. (2014). Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo. The Scientific World Journal, 690752.
  • [113] Alp, D., Ertürkmen, P. (2017). Probiyotik olarak kullanılan Lactobacillus spp. suşlarının kolesterol düşürücü etkileri ve olası mekanizmalar. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 108-113.
  • [114] Pereira, D.I., Gibson, G.R. (2002). Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Critical Reviews in Biochemistry and Molecular Biology, 37(4), 259-281.
  • [115] Ruas-Madiedo, P., Salazar, N., De Los Reyes-Gavilan, C.G. (2009). Biosynthesis and chemical composition of exopolysaccharides produced by lactic acid bacteria. bacterial polysaccharides: Current Innovations and Future Trends, 279-310.
  • [116] Lynch, K.M., Zannini, E., Coffey, A., Arendt, E.K. (2018). Lactic acid bacteria exopolysaccharides in foods and beverages: Isolation, properties, characterization, and health benefits. Annual Review of Food Science and Technology, 9, 155-176.
  • [117] Nakajima, H., Suzuki, Y., Hirota, T. (1992). Cholesterol lowering activity of ropy fermented milk. Journal of Food Science, 57(6), 1327-1329.
  • [118] Sasikumar, K., Vaikkath, D.K., Devendra, L., Nampoothiri, K.M. (2017). An exopolysaccharide (eps) from a Lactobacillus plantarum Br2 with potential benefits for making functional foods. Bioresource Technology, 241, 1152-1156.
  • [119] Welman, A.D. (2009). Exploitation of exopolysaccharides from lactic acid bacteria: Nutritional and functional benefits. Bacterial Polysaccharides: Current İnnovations and Future Trends, 331-344.
  • [120] Bhat, B., Bajaj, B.K. (2018). Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1 isolated from Kalarei. Bioresource Technology, 254, 264-267.
  • [121] Lin, Y., Sun, Z. (2010). Current views on type 2 diabetes. The Journal Of Endocrinology, 204(1), 1-11.
  • [122] Atmaca, M.H., Ecemiş, G.C. (2012). Oral antidiyabetik ajanlar. Journal of Experimental and Clinical Medicine, 29(1s), 23-29.
  • [123] Kazeem, M.I., Adamson, J.O., Ogunwande, I.A. (2013). Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida benth leaf. Biomed Research International. [124] Bayraktar, M. (2001). Oral hipoglisemikler. Türkiye Tıp Dergisi. 8(Ek 1), 35-44.
  • [125] Manohar, V., Talpur, N.A., Echard, B.W., Lieberman, S., Preuss, H.G. (2002). Effects of a water‐soluble extract of maitake mushroom on circulating glucose/insulin concentrations in kk mice. Diabetes, Obesity and Metabolism, 4(1), 43-48.
  • [126] Kim, S.D., Nho, H.J. (2004). Isolation and characterization of α-glucosidase ınhibitor from the fungus Ganoderma lucidum. Journal Of Microbiology, 42(3), 223-227.
  • [127] Mccue, P., Kwon, Y.I., Shetty, K. (2005). Anti‐amylase, anti‐glucosidase and anti‐angiotensin I‐converting enzyme potential of selected foods. Journal of Food Biochemistry, 29(3), 278-294.
  • [128] Ogunwande, I.A., Matsui, T., Fujise, T., Matsumoto, K. (2007). Α-glucosidase inhibitory profile of Nigerian medicinal plants in immobilized assay system. Food Science And Technology Research, 13(2), 169-172.
  • [129] Jong-Anurakkun, N., Bhandari, M.R., Kawabata, J. (2007). Α-glucosidase inhibitors from Devil Tree (Alstonia Scholaris). Food Chemistry, 103(4), 1319-1323.
  • [130] Ramchandran, L., Shah, N.P. (2009). Effect of exopolysaccharides and inulin on the proteolytic, angiotensin-I-converting enzyme and α-glucosidase-inhibitory activities as well as on textural and rheological properties of low-fat yogurt during refrigerated storage. Dairy Science & Technology, 89(6), 583-600.
  • [131] Chen, P., Zhang, Q., Dang, H., Liu, X., Tian, F., Zhao, J., Chen, Y., Zhang, H., Chen, W. (2014). Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity. Food Control, 35(1), 65-72.
  • [132] Zhao, J., Wang, L., Cheng, S., Zhang, Y., Yang, M., Fang, R., Li, H., Man, C., Jiang, Y. (2022). A potential symbiotic strategy for the prevention of type 2 diabetes: Lactobacillus paracasei JY062 and exopolysaccharide isolated from Lactobacillus plantarum JY039. Nutrients, 14(2), 377.
  • [133] Hashemi, S.M.B., Abedi, E., Kaveh, S., Mousavifard, M. (2022). Hypocholesterolemic, antidiabetic and bioactive properties of ultrasound-stimulated exopolysaccharide produced by Lactiplantibacillus plantarum strains. Bioactive Carbohydrates and Dietary Fibre, 28, 100334.
  • [134] Angelin, J., Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules, 162, 853-865.
  • [135] Zaghloul, E.H., Ibrahim, M.I. (2022). Production and characterization of exopolysaccharide from newly isolated marine probiotic Lactiplantibacillus plantarum EI6 with in vitro wound healing activity. Frontiers in Microbiology, 13.
  • [136] Demir, A., (2022). Potansiyel Probiyotik Lactobacillus plantarum GD2 Tarafından Üretilen Ekzopolisakkarit’in (Eps) Yara İyileşme Özelliklerinin Araştırılması. Yüksek Lisans Tezi. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara
  • [137] Priyanka, P., Arun, A.B., Ashwini, P., Rekha, P.D. (2016). Functional and cell proliferative properties of an exopolysaccharide produced by Nitratireductor sp. PRIM-31. International Journal of Biological Macromolecules, 85, 400-404.
  • [138] Trabelsi, I., Ktari, N., Slima, S.B., Triki, M., Bardaa, S., Mnif, H., Salah, R.B. (2017). Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6. International Journal of Biological Macromolecules, 103, 194-201.
  • [139] Jurášková, D., Ribeiro, S.C., Silva, C.C. (2022). Exopolysaccharides produced by lactic acid bacteria: From biosynthesis to health-promoting properties. Foods, 11(2), 156.
  • [140] Rani, R.P., Anandharaj, M., Ravindran, A.D. (2018). Characterization of a novel exopolysaccharide produced by Lactobacillus gasseri FR4 and demonstration of its in vitro biological properties. International Journal of Biological Macromolecules, 109, 772-783.
  • [141] Noda, M., Danshiitsoodol, N., Sakaguchi, T., Kanno, K., Sugiyama, M. (2021). Exopolysaccharide produced by plant-derived Lactobacillus plantarum SN35N exhibits antiviral activity. Biological and Pharmaceutical Bulletin, 44(12), 1886-1890.
  • [142] Álvarez, A., Manjarres, J.J., Ramírez, C., Bolívar, G. (2021). Use of an exopolysaccharide-based edible coating and lactic acid bacteria with antifungal activity to preserve the postharvest quality of cherry tomato. LWT, 151, 112225.
  • [143] Saadat, Y.R., Khosroushahi, A.Y., Gargari, B.P. (2019). A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydrate Polymers, 217, 79-89.
  • [144] Rodríguez, C., Medici, M., Rodriguez, A.V., Mozzi, F., de Valdez, G.F. (2009). Prevention of chronic gastritis by fermented milks made with exopolysaccharide-producing Streptococcus thermophilus strains. Journal of Dairy Science, 92(6), 2423-2434.
  • [145] Marcial, G., Villena, J., Faller, G., Hensel, A., de Valdéz, G.F. (2017). Exopolysaccharide-producing Streptococcus thermophilus CRL1190 reduces the inflammatory response caused by Helicobacter pylori. Beneficial Microbes, 8(3), 451-461.

Exopolysaccharides Produced by Lactic Acid Bacteria and Their Therapeutic Effects

Year 2022, Volume: 20 Issue: 4, 412 - 429, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224359

Abstract

Exopolysaccharides are polymers formed by the combination of repeated sugar units with glycosidic bonds and can be produced by a wide variety of microorganisms, plants and animals. One of the most important producers is lactic acid bacteria (LAB). These polymers can be covalently bound to the cell in which they are synthesized, or they can be secreted into the environment and be weakly bound to the cell by electrostatic force. They may protect the cell that they are in against factors such as low water activity, osmotic stress, bacteriophages and toxic compounds. Including their synthesis mechanism, a wide variety of differences in the properties of exopolysaccharides such as the type and number of sugar units they contain, molecular weight, the presence of side chains and charge have been reported, and these differences lead to the formation of exopolysaccharides with various functional properties and unique structures. Exopolysaccharides produced by LAB have found a very common uses in food systems because they influence the textural structure and organoleptic quality, especially with their non-toxicity and biodegradable feature. In addition to the technological properties of exopolysaccharides, many biological functions such as antioxidant, anti-tumor, prebiotic, wound-healing, antidiabetic and cholesterol level regulation have been revealed in the light of various studies. In this review, the structure of exopolysaccharides and some of their beneficial effects on human health are presented by means of the relevant studies in the literature.

References

  • [1] Zapaśnik, A., Sokołowska, B., Bryła, M. (2022). Role of lactic acid bacteria in food preservation and safety. Foods, 11(9), 1283.
  • [2] Mathur, H., Beresford, T.P., Cotter, P.D. (2020). Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients, 12(6), 1679.
  • [3] Prete, R., Alam, M.K., Perpetuini, G., Perla, C., Pittia, P., Corsetti, A. (2021). Lactic acid bacteria exopolysaccharides producers: A sustainable tool for functional foods. Foods, 10(7), 1653.
  • [4] Tiwari, S., Kavitake, D., Devi, P.B., Shetty, P.H. (2021). Bacterial exopolysaccharides for improvement of technological, functional and rheological properties of yoghurt. International Journal of Biological Macromolecules, 183, 1585-1595.
  • [5] Daba, G.M., Elnahas, M.O., Elkhateeb, W. A. (2021). Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. International Journal of Biological Macromolecules, 173, 79-89.
  • [6] Lynch, K.M., Zannini, E., Coffey, A., Arendt, E.K. (2018). Lactic acid bacteria exopolysaccharides in foods and beverages: Isolation, properties, characterization, and health benefits. Annual Review of Food Science and Technology, 9, 155-176.
  • [7] Zhou, Y., Cui, Y., Qu, X. (2019). Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydrate polymers, 207, 317-332.
  • [8] Sørensen, H. M., Rochfort, K.D., Maye, S., MacLeod, G., Brabazon, D., Loscher, C., Freeland, B. (2022). Exopolysaccharides of lactic acid bacteria: Production, purification and health benefits towards functional food. Nutrients, 14(14), 2938.
  • [9] Casillo, A., Lanzetta, R., Parrilli, M., Corsaro, M.M. (2018). Exopolysaccharides from marine and marine extremophilic bacteria: Structures, properties, ecological roles and applications. Marine Drugs, 16(2), 69.
  • [10] Ates, O. (2015). Systems biology of microbial exopolysaccharides production. Frontiers in Bioengineering and Biotechnology, 3, 200.
  • [11] Sutherland, IW. (2007). Bacterial exopolysaccharides. In: Kamerling JP, Editor. Comprehensive Glycoscience. Oxford: Elsevier, 521–57.
  • [12] Badel, S., Bernardi, T., Michaud, P. (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advances, 29(1), 54-66.
  • [13] Zeidan, A.A., Poulsen, V.K., Janzen, T., Buldo, P., Derkx, P.M., Øregaard, G., Neves, A.R. (2017). Polysaccharide production by lactic acid bacteria: From genes to industrial applications. FEMS Microbiology Reviews, 41(Supp_1), S168-S200.
  • [14] Sutherland, I.W. (2001). Microbial polysaccharides from gram-negative bacteria. International Dairy Journal, 11(9), 663-674.
  • [15] Welman, A.D., Maddox, I.S. (2003). Exopolysaccharides from lactic acid bacteria: Perspectives and Challenges. Trends In Biotechnology, 21(6), 269-274.
  • [16] Ismail, B., Nampoothiri, K.M. (2010). Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Archives of Microbiology, 192(12), 1049-1057.
  • [17] Dilna, S.V., Surya, H., Aswathy, R.G., Varsha, K.K., Sakthikumar, D.N., Pandey, A., Nampoothiri, K.M. (2015). Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT-Food Science and Technology, 64(2), 1179-1186.
  • [18] Jurášková, D., Ribeiro, S.C., Silva, C.C. (2022). Exopolysaccharides produced by lactic acid bacteria: From biosynthesis to health-promoting properties. Foods, 11(2), 156.
  • [19] Dertli, E., Mercan, E., Arıcı, M., Yılmaz, M.T., Sağdıç, O. (2016). Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT-Food Science And Technology, 71, 116-124.
  • [20] Kanmani, P., Albarracin, L., Kobayashi, H., Lida, H., Komatsu, R., Kober, A.H., Ohtsubo, W.I., Suda, Y., Aso, H., Makino, S., Kano, H., Saito, T., Villena, J., Kitazawa, H. (2018). Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells. Molecular İmmunology, 93, 253-265.
  • [21] Nachtigall, C., Vogel, C., Rohm, H., Jaros, D. (2020). How capsular exopolysaccharides affect cell surface properties of lactic acid bacteria. Microorganisms, 8(12), 1904.
  • [22] Yang, Z., Li, S., Zhang, X., Zeng, X., Li, D., Zhao, Y., Zhang, J. (2010). Capsular and slime-polysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut: potential application in fermented milk products. Journal Of Bioscience And Bioengineering, 110(1), 53-57.
  • [23] Freitas, F., Alves, V.D., Reis, M.A., Crespo, J.G., Coelhoso, I.M. (2014). Microbial polysaccharide‐based membranes: Current and future applications. Journal of Applied Polymer Science, 131(6), 40047.
  • [24] Harutoshi, T. (2013). Exopolysaccharides of lactic acid bacteria for food and colon health applications. In Lactic acid bacteria-R & D for food, health and livestock purposes. IntechOpen.
  • [25] Karaca, H., Dinçer, E., Kıvanç, M. (2010). Metabolik mühendisliğinde laktik asit bakterileri. Akademik Gıda, 8(1), 32-38.
  • [26] Kajala, I., Shi, Q., Nyyssölä, A., Maina, N.H., Hou, Y., Katina, K., Tenkanen, M., Juvonen, R. (2015). Cloning and characterization of a Weissella confusa dextransucrase and its application in high fibre baking. Plos One, 10(1), E0116418.
  • [27] Ahmad, N.H., Mustafa, S., Che Man, Y.B. (2015). Microbial polysaccharides and their modification approaches: A review. International Journal Of Food Properties, 18(2), 332-347.
  • [28] Delvart, A., Moreau, C., Cathala, B. (2022). Dextrans and dextran derivatives as polyelectrolytes in layer-by-layer processing materials–A review. Carbohydrate Polymers, 119700.
  • [29] Patel, A., Prajapati, J.B., Holst, O., Ljungh, A. (2014). Determining probiotic potential of exopolysaccharide producing lactic acid bacteria isolated from vegetables and traditional Indian fermented food products. Food Bioscience, 5, 27-33.
  • [30] Ryan, P.M., Ross, R.P., Fitzgerald, G.F., Caplice, N.M., Stanton, C. (2015). Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food & Function, 6(3), 679-693.
  • [31] Zannini, E., Waters, D.M., Coffey, A., Arendt, E.K. (2016). Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Applied Microbiology and Biotechnology, 100(3), 1121-1135.
  • [32] Kim, K., Lee, G., Thanh, H.D., Kim, J.H., Konkit, M., Yoon, S., Park, M., Yang, S., Park, E., Kim, W. (2018). Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response. Journal Of Dairy Science, 101(7), 5702-5712.
  • [33] Abid, Y., Casillo, A., Gharsallah, H., Joulak, I., Lanzetta, R., Corsaro, M.M., Attia, H., Azabou, S. (2018). Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. International Journal Of Biological Macromolecules, 108, 719-728.
  • [34] Bengoa, A.A., Llamas, M.G., Iraporda, C., Dueñas, M.T., Abraham, A.G., Garrote, G.L. (2018). Impact of growth temperature on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from kefir grains. Food Microbiology, 69, 212-218.
  • [35] Tsuda, H., Miyamoto, T. (2010). Production of exopolysaccharide by Lactobacillus plantarum and the prebiotic activity of the exopolysaccharide. Food Science and Technology Research, 16(1), 87-92.
  • [36] Saad, N., Delattre, C., Urdaci, M., Schmitter, J.M., Bressollier, P. (2013). An overview of the last advances in probiotic and prebiotic field. LWT-Food Science and Technology, 50(1), 1-16.
  • [37] Dal Bello, F., Walter, J., Hertel, C., Hammes, W.P. (2001). In vitro study of prebiotic properties of levan-type exopolysaccharides from Lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Systematic and Applied Microbiology, 24(2), 232-237.
  • [38] O'Connor, E.B., Barrett, E., Fitzgerald, G., Hill, C., Stanton, C., Ross, R.P. (2006). Production of vitamins, exopolysaccharides and bacteriocins by probiotic bacteria. in probiotic dairy products, A. Tamime (Ed.) 167–194.
  • [39] Das, D., Baruah, R., Goyal, A. (2014). A food additive with prebiotic properties of an α-d-glucan from Lactobacillus plantarum DM5. International Journal of Biological Macromolecules, 69, 20-26.
  • [40] Yılmaz-Ersan, L., Özcan, T., Akpınar-Bayizit, A., Delikanlı, B. (2016). Bifidojenik faktör olarak laktoz türevlerinin önemi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30(2), 79-90.
  • [41] Hongpattarakere, T., Cherntong, N., Wichienchot, S., Kolida, S., Rastall, R.A. (2012). In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydrate Polymers, 87(1), 846-852.
  • [42] Caggianiello, G., Kleerebezem, M., Spano, G. (2016). Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Applied Microbiology and Biotechnology, 100(9), 3877-3886.
  • [43] Gopal, P.K., Sullivan, P.A., Smart, J.B. (2001). Utilisation of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20. International Dairy Journal, 11(1-2), 19-25.
  • [44] Kaplan, H., Hutkins, R.W. (2003). Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195. Applied and Environmental Microbiology, 69(4), 2217-2222.
  • [45] Huebner, J., Wehling, R.L., Hutkins, R.W. (2007). Functional activity of commercial prebiotics. International Dairy Journal, 17(7), 770-775.
  • [46] Kekkonen, R., Ahlroos, T., Suomalainen, T., Tynkkynen, S., Poussa, T., Nevala, R., Korpela, R. (2007). A combination of galacto-oligosaccharides and Lactobacillus GG increases Bifidobacteria to a greater extent than Lactobacillus GG on its own. Milchwissenschaft, 62(3), 326-330.
  • [47] Lebeer, S., Verhoeven, T.L., Perea Vélez, M., Vanderleyden, J., De Keersmaecker, S.C. (2007). Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Applied and Environmental Microbiology, 73(21), 6768-6775.
  • [48] Salazar, N., Ruas-Madiedo, P., Kolida, S., Collins, M., Rastall, R., Gibson, G., Clara, G. (2009). Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures. International Journal Of Food Microbiology, 135(3), 260-267.
  • [49] Fanning, S., Hall, L. J., Cronin, M., Zomer, A., Macsharry, J., Goulding, D., Motherway, M., O., Shanahan, F., Nally, K., Dougan, G. Van Sinderen, D. (2012). Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proceedings of The National Academy of Sciences, 109(6), 2108-2113.
  • [50] Hidalgo-Cantabrana, C., López, P., Gueimonde, M., De Los Reyes-Gavilán, C.G., Suárez, A., Margolles, A., Ruas-Madiedo, P. (2012). Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics and Antimicrobial Proteins, 4(4), 227-237.
  • [51] Yasuda, E., Serata, M., Sako, T. (2008). Suppressive effect on activation of macrophages by Lactobacillus casei strain shirota genes determining the synthesis of cell wall-associated polysaccharides. Applied and Environmental Microbiology, 74, 4746-4755 . [52] Bleau, C. 1., Monges, A., Rashidan, K., Laverdure, J. P., Lacroix, M., Van Calsteren, M.R., Millette, M., Savard, R., Lamontagne, L. (2010). Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW‐9595M increase IL‐10 production by macrophages. Journal of Applied Microbiology, 108(2), 666-675.
  • [53] Remus, D.M., Van Kranenburg, R., Van Swam, I.I., Taverne, N., Bongers, R.S., Wels, M., Wells, J., M., Bron, P., A., Kleerebezem, M. (2012). Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling. Microbial Cell Factories, 11(1), 1-10.
  • [54] Zhou, X., Zhang, D., Qi, W., Hong, T., Xiong, T., Wu, T., Geng, F., Xie, M., Nie, S. (2021). Exopolysaccharides from Lactobacillus plantarum NCU116 facilitate intestinal homeostasis by modulating intestinal epithelial regeneration and microbiota. Journal of Agricultural and Food Chemistry, 69(28), 7863-7873.
  • [55] Chey, W.D., Kurlander, J., Eswaran, S. (2015). Irritable bowel syndrome: A clinical review. Jama, 313(9), 949-958.
  • [56] Adriani, A., Ribaldone, D.G., Astegiano, M., Durazzo, M., Saracco, G.M., Pellicano, R. (2018). Irritable bowel syndrome: The clinical approach. Panminerva Medica, 60(4), 213-222.
  • [57] Camilleri, M. (2018). Management options for irritable bowel syndrome. In Mayo Clinic Proceedings (Vol. 93, No. 12, Pp. 1858-1872). Elsevier.
  • [58] Kaur, C., Kapoor, H.C. (2001). Antioxidants in fruits and vegetables-The millennium’s health. International Journal of Food Science & Technology, 36(7), 703-725.
  • [59] Xu, R., Shang, N., Li, P. (2011). In vitro and ın vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. Anaerobe, 17(5), 226-231.
  • [60] Karabulut, H., Gülay, M.Ş. (2016). Serbest radikaller. Mehmet Akif Ersoy University Journal Of Health Sciences Institute, 4(1), 50-59.
  • [61] Finkel, T., Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239-247.
  • [62] Melov, S., Ravenscroft, J., Malik, S., Gill, M.S., Walker, D.W., Clayton, P.E., Wallace, D.E., Malfroy, B., Doctrow, S., R., Lithgow, G.J. (2000). Extension of life-span with superoxide dismutase/catalase mimetics. Science, 289(5484), 1567-1569.
  • [63] Liu, C.F., Tseng, K.C., Chiang, S.S., Lee, B.H., Hsu, W.H., Pan, T.M. (2011). Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. Journal of The Science of Food and Agriculture, 91(12), 2284-2291.
  • [64] Pan, D., Mei, X. (2010). Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohydrate Polymers, 80(3), 908-914.
  • [65] Zhang, L., Liu, C., Li, D., Zhao, Y., Zhang, X., Zeng, X., Yang, Z., Li, S. (2013). Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. International Journal of Biological Macromolecules, 54, 270-275.
  • [66] Seo, B.J., Bajpai, V.K., Rather, I.A., Park, Y.H. (2015). Partially purified exopolysaccharide from Lactobacillus plantarum YML009 with total phenolic content, antioxidant and free radical scavenging efficacy. Indian Journal of Pharmaceutical Education and Research, 49(4), 282-292.
  • [67] Ou, B., Huang, D., Hampsch-Woodill, M., Flanagan, J.A., Deemer, E.K. (2002). Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. Journal of Agricultural and Food Chemistry, 50(11), 3122-3128.
  • [68] Koca, N., Karadeniz, F. (2003). Serbest radikal oluşum mekanizmaları ve vücuttaki antioksidan savunma sistemleri. Gıda Mühendisliği Dergisi, 16, 32-37.
  • [69] Karabulut, H., Gülay, M.Ş. (2016). Antioksidanlar. Veterinary Journal of Mehmet Akif Ersoy University, 1(1), 65-76.
  • [70] Wang, C.L., Huang, T.H., Liang, T.W., Fang, C.Y., Wang, S.L. (2011). Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023. New Biotechnology, 28(6), 559-565.
  • [71] Sevim, D. (2011). Antioksidanlar ve Zeytinyağı. Zeytin Bilimi, 2(1), 43-47.
  • [72] Valentão, P., Fernandes, E., Carvalho, F., Andrade, P.B., Seabra, R.M., Bastos, M.L. (2002). Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorous acid. Journal of Agricultural and Food Chemistry, 50(17), 4989-4993.
  • [73] Li, W., Ji, J., Chen, X., Jiang, M., Rui, X., Dong, M. (2014). Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydrate Polymers, 15(2), 351-359.
  • [74] Xing, J., Wang, G., Zhang, Q., Liu, X., Gu, Z., Zhang, H., Chen, Y.Q., Chen, W. (2015). Determining antioxidant activities of Lactobacilli cell-free supernatants by cellular antioxidant assay: A comparison with traditional methods. Plos One, 10(3), E0119058.
  • [75] Liu, C.F., Hu, C.L., Chiang, S.S., Tseng, K.C., Yu, R.C., Pan, T.M. (2009). Beneficial preventive effects of gastric mucosal lesion for soy− skim milk fermented by lactic acid bacteria. Journal of Agricultural and Food Chemistry, 57(10), 4433-4438.
  • [76] Wang, T., Jonsdottir, R., Ólafsdóttir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chemistry, 116(1), 240-248.
  • [77] Lin, C., Wang, C., Chang, S., Inbaraj, B.S., Chen, B. (2009). Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. International Journal of Biological Macromolecules, 45(2), 146–151.
  • [78] Zhang, Z., Liu, Z., Tao, X., Wei, H. (2016). Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities. Carbohydrate Polymers, 153, 25–33.
  • [79] Adesulu-Dahunsi, A.T., Sanni, A.I., Jeyaram, K. (2018). Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT, 87, 432-442.
  • [80] Sirin, S., Aslim, B. (2020). Characterization of lactic acid bacteria derived exopolysaccharides for use as a defined neuroprotective agent against amyloid beta1–42-induced apoptosis in SH-SY5Y cells. Scientific Reports, 10(1), 1-18.
  • [81] Min, W.H., Fang, X.B., Wu, T., Fang, L., Liu, C.L., Wang, J. (2019). Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103. Journal of bioscience and bioengineering, 127(6), 758-766.
  • [82] Milardović, S., Iveković, D., Grabarić, B.S. (2006). A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry, 68(2), 175-180.
  • [83] Liu, C., Wang, C., Xu, Z., Wang, Y. (2007). Isolation, chemical characterization and antioxidant activities of two polysaccharide from the gel and the skin of Aloe barbadensis Miller irrigated with sea water, Process Biochemistry, 42(6), 961–970.
  • [84] Peng, X., Xiong, Y.L., Kong, B. (2009). Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chemistry, 113(1), 196-201.
  • [85] Huang, S.Q., Ding, S., Fan, L. (2012). Antioxidant activities of five polysaccharides from Inonotus obliquus. International Journal of Biological Macromolecules, 50(5), 1183-1187.
  • [86] Özcan, O., Erdal, H., Çakırca, G., Yönden, Z. (2015). Oksidatif stres ve hücre içi lipit, protein ve DNA yapıları üzerine etkileri. Journal of Clinical and Experimental Investigations, 6(3), 331-336.
  • [87] Xu, X., Qiao, Y., Peng, Q., Shi, B., Dia, V. P. (2022). Antioxidant and immunomodulatory properties of partially purified exopolysaccharide from Lactobacillus casei isolated from Chinese Northeast Sauerkraut. Immunological Investigations, 51(4), 748-765.
  • [88] Adesulu-Dahunsi, A.T., Sanni, A.I., Jeyaram, K. (2018). Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT, 87, 432-442.
  • [89] Li, S., Shah, N.P. (2014). Antioxidant and antibacterial activities of sulfatedpolysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC1275. Food Chemistry, 165, 262–270.
  • [90] Jiang, B., Wang, L., Zhu, M., Wu, S., Wang, X., Li, D., Liu, C., Feng, Z., Tian, B. (2021). Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system. LWT, 147, 111617.
  • [91] Huang, D., Ou, B., Prior, R.L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural And Food Chemistry, 53(6), 1841-1856.
  • [92] Xu, R., Shang, N., Li, P. (2011). In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. European Food Research and Technology, 232, 231-241 17(5), 226-231.
  • [93] Kim, D.Y., Shin, W.S. (2015). Unique characteristics of self-assembly of bovine serum albumin and fucoidan, an anionic sulfated polysaccharide, under various aqueous environments. Food Hydrocolloids, 44, 471-477.
  • [94] Li, W., Tang, W., Ji, J., Xia, X., Rui, X., Chen, X., Jiang, M., Zhou, J., Dong, M. (2015). Characterization of a novel polysaccharide with anti-colon cancer activity from Lactobacillus helveticus MB2-1. Carbohydrate Research, 411, 6-14.
  • [95] Karunanithi, S., Levi, L. (2018). High-fat diet and colorectal cancer: Myths and facts. Future Oncology, 14(6), 493-495.
  • [96] El-Deeb, N.M., Yassin, A.M., Al-Madboly, L.A., El-Hawiet, A. (2018). A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, La-Eps-20079, molecularly regulates both apoptotic and Nf-Κb inflammatory pathways in human colon cancer. Microbial Cell Factories, 17(1), 1-15.
  • [97] Wu, J., Zhang, Y., Ye, L., Wang, C. (2021). The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: A review. Carbohydrate polymers, 253, 117308.
  • [98] Pavlopoulou, A., Spandidos, D.A., Michalopoulos, I. (2015). Human cancer databases. Oncology Reports, 33(1), 3-18.
  • [99] Anonim. (2016). Kanser Nedir? Türk Tıbbi Onkoloji Derneği. https://www.kanser.org/saglik/toplum/sayfa/kanser-nedir
  • [100] Wang, K., Li, W., Rui, X., Chen, X., Jiang, M., Dong, M. (2014). Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. International Journal of Biological Macromolecules, 63, 133– 139.
  • [101] Zhao, Q., Xie, B., Yan, J., Zhao, F., Xiao, J., Yao, L., Zhao, B., Huang, Y. (2012). In vitro antioxidant and antitumor activities of polysaccharides extracted from Asparagus officinalis. Carbohydrate Polymers, 87(1), 392-396.
  • [102] Gunnarsson, H., Ekholm, A., Olsson, L.I. (2013). Emergency presentation and socioeconomic status in colon cancer. Ejso, 39, 831-836.
  • [103] Jiang, X., Zhang, Z., Chen, Y., Cui, Z., Shi, L. (2014). Structural elucidation and in vitro antitumor activity of a novel oligosaccharide from Bombyx batryticatus. Carbohydrate Polymers, 103, 434-441.
  • [104] Choi, S.S., Kim, Y., Han, K.S., You, S., Oh, S., Kim, S.H. (2006). Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress ın vitro. Letters in Applied Microbiology, 42(5), 452-458.
  • [105] Ewaschuk, J.B., Walker, J.W., Diaz, H., Madsen, K.L. (2006). Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo ın mice. The Journal of Nutrition, 136(6), 1483-1487.
  • [106] Haghshenas, B., Nami, Y., Haghshenas, M., Abdullah, N., Rosli, R., Radiah, D., Yari Khosroushahi, A. (2015). Bioactivity characterization of Lactobacillus strains isolated from dairy products. Microbiologyopen, 4(5), 803-813.
  • [107] Rajoka, M.S.R., Jin, M., Haobin, Z., Li, Q., Shao, D., Jiang, C., Huang, Q., Yang, H., Shi, J., Hussain, N. (2018). Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk. Lwt, 89, 638-647.
  • [108] Vinderola, G., Perdigón, G., Duarte, J., Farnworth, E., Matar, C. (2006). Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine, 36(5-6), 254-260.
  • [109] Patten, D.A., Leivers, S., Chadha, M.J., Maqsood, M., Humphreys, P.N., Laws, A.P., Collett, A. (2014). The structure and immunomodulatory activity on intestinal epithelial cells of the epss isolated from Lactobacillus helveticus sp. rosyjski and Lactobacillus acidophilus sp. 5e2. Carbohydrate Research, 384, 119-127.
  • [110] Who. (2017). Cardiovascular diseases (Cvds). Http://Www.Who.İnt/En/Newsroom/ Fact-Sheets/Detail/Cardiovascular-Diseases-(Cvds), (Ağustos 2018).
  • [111] Ahire, J.J., Bhat, A.A., Thakare, J.M., Pawar, P.B., Zope, D.G., Jain, R.M., Chaudhari, B.L. (2012). Cholesterol assimilation and biotransformation by Lactobacillus helveticus. Biotechnology Letters, 34(1), 103-107.
  • [112] Tsai, C.C., Lin, P.P., Hsieh, Y.M., Zhang, Z.Y., Wu, H.C., Huang, C.C. (2014). Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo. The Scientific World Journal, 690752.
  • [113] Alp, D., Ertürkmen, P. (2017). Probiyotik olarak kullanılan Lactobacillus spp. suşlarının kolesterol düşürücü etkileri ve olası mekanizmalar. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 108-113.
  • [114] Pereira, D.I., Gibson, G.R. (2002). Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Critical Reviews in Biochemistry and Molecular Biology, 37(4), 259-281.
  • [115] Ruas-Madiedo, P., Salazar, N., De Los Reyes-Gavilan, C.G. (2009). Biosynthesis and chemical composition of exopolysaccharides produced by lactic acid bacteria. bacterial polysaccharides: Current Innovations and Future Trends, 279-310.
  • [116] Lynch, K.M., Zannini, E., Coffey, A., Arendt, E.K. (2018). Lactic acid bacteria exopolysaccharides in foods and beverages: Isolation, properties, characterization, and health benefits. Annual Review of Food Science and Technology, 9, 155-176.
  • [117] Nakajima, H., Suzuki, Y., Hirota, T. (1992). Cholesterol lowering activity of ropy fermented milk. Journal of Food Science, 57(6), 1327-1329.
  • [118] Sasikumar, K., Vaikkath, D.K., Devendra, L., Nampoothiri, K.M. (2017). An exopolysaccharide (eps) from a Lactobacillus plantarum Br2 with potential benefits for making functional foods. Bioresource Technology, 241, 1152-1156.
  • [119] Welman, A.D. (2009). Exploitation of exopolysaccharides from lactic acid bacteria: Nutritional and functional benefits. Bacterial Polysaccharides: Current İnnovations and Future Trends, 331-344.
  • [120] Bhat, B., Bajaj, B.K. (2018). Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1 isolated from Kalarei. Bioresource Technology, 254, 264-267.
  • [121] Lin, Y., Sun, Z. (2010). Current views on type 2 diabetes. The Journal Of Endocrinology, 204(1), 1-11.
  • [122] Atmaca, M.H., Ecemiş, G.C. (2012). Oral antidiyabetik ajanlar. Journal of Experimental and Clinical Medicine, 29(1s), 23-29.
  • [123] Kazeem, M.I., Adamson, J.O., Ogunwande, I.A. (2013). Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida benth leaf. Biomed Research International. [124] Bayraktar, M. (2001). Oral hipoglisemikler. Türkiye Tıp Dergisi. 8(Ek 1), 35-44.
  • [125] Manohar, V., Talpur, N.A., Echard, B.W., Lieberman, S., Preuss, H.G. (2002). Effects of a water‐soluble extract of maitake mushroom on circulating glucose/insulin concentrations in kk mice. Diabetes, Obesity and Metabolism, 4(1), 43-48.
  • [126] Kim, S.D., Nho, H.J. (2004). Isolation and characterization of α-glucosidase ınhibitor from the fungus Ganoderma lucidum. Journal Of Microbiology, 42(3), 223-227.
  • [127] Mccue, P., Kwon, Y.I., Shetty, K. (2005). Anti‐amylase, anti‐glucosidase and anti‐angiotensin I‐converting enzyme potential of selected foods. Journal of Food Biochemistry, 29(3), 278-294.
  • [128] Ogunwande, I.A., Matsui, T., Fujise, T., Matsumoto, K. (2007). Α-glucosidase inhibitory profile of Nigerian medicinal plants in immobilized assay system. Food Science And Technology Research, 13(2), 169-172.
  • [129] Jong-Anurakkun, N., Bhandari, M.R., Kawabata, J. (2007). Α-glucosidase inhibitors from Devil Tree (Alstonia Scholaris). Food Chemistry, 103(4), 1319-1323.
  • [130] Ramchandran, L., Shah, N.P. (2009). Effect of exopolysaccharides and inulin on the proteolytic, angiotensin-I-converting enzyme and α-glucosidase-inhibitory activities as well as on textural and rheological properties of low-fat yogurt during refrigerated storage. Dairy Science & Technology, 89(6), 583-600.
  • [131] Chen, P., Zhang, Q., Dang, H., Liu, X., Tian, F., Zhao, J., Chen, Y., Zhang, H., Chen, W. (2014). Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity. Food Control, 35(1), 65-72.
  • [132] Zhao, J., Wang, L., Cheng, S., Zhang, Y., Yang, M., Fang, R., Li, H., Man, C., Jiang, Y. (2022). A potential symbiotic strategy for the prevention of type 2 diabetes: Lactobacillus paracasei JY062 and exopolysaccharide isolated from Lactobacillus plantarum JY039. Nutrients, 14(2), 377.
  • [133] Hashemi, S.M.B., Abedi, E., Kaveh, S., Mousavifard, M. (2022). Hypocholesterolemic, antidiabetic and bioactive properties of ultrasound-stimulated exopolysaccharide produced by Lactiplantibacillus plantarum strains. Bioactive Carbohydrates and Dietary Fibre, 28, 100334.
  • [134] Angelin, J., Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules, 162, 853-865.
  • [135] Zaghloul, E.H., Ibrahim, M.I. (2022). Production and characterization of exopolysaccharide from newly isolated marine probiotic Lactiplantibacillus plantarum EI6 with in vitro wound healing activity. Frontiers in Microbiology, 13.
  • [136] Demir, A., (2022). Potansiyel Probiyotik Lactobacillus plantarum GD2 Tarafından Üretilen Ekzopolisakkarit’in (Eps) Yara İyileşme Özelliklerinin Araştırılması. Yüksek Lisans Tezi. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara
  • [137] Priyanka, P., Arun, A.B., Ashwini, P., Rekha, P.D. (2016). Functional and cell proliferative properties of an exopolysaccharide produced by Nitratireductor sp. PRIM-31. International Journal of Biological Macromolecules, 85, 400-404.
  • [138] Trabelsi, I., Ktari, N., Slima, S.B., Triki, M., Bardaa, S., Mnif, H., Salah, R.B. (2017). Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6. International Journal of Biological Macromolecules, 103, 194-201.
  • [139] Jurášková, D., Ribeiro, S.C., Silva, C.C. (2022). Exopolysaccharides produced by lactic acid bacteria: From biosynthesis to health-promoting properties. Foods, 11(2), 156.
  • [140] Rani, R.P., Anandharaj, M., Ravindran, A.D. (2018). Characterization of a novel exopolysaccharide produced by Lactobacillus gasseri FR4 and demonstration of its in vitro biological properties. International Journal of Biological Macromolecules, 109, 772-783.
  • [141] Noda, M., Danshiitsoodol, N., Sakaguchi, T., Kanno, K., Sugiyama, M. (2021). Exopolysaccharide produced by plant-derived Lactobacillus plantarum SN35N exhibits antiviral activity. Biological and Pharmaceutical Bulletin, 44(12), 1886-1890.
  • [142] Álvarez, A., Manjarres, J.J., Ramírez, C., Bolívar, G. (2021). Use of an exopolysaccharide-based edible coating and lactic acid bacteria with antifungal activity to preserve the postharvest quality of cherry tomato. LWT, 151, 112225.
  • [143] Saadat, Y.R., Khosroushahi, A.Y., Gargari, B.P. (2019). A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydrate Polymers, 217, 79-89.
  • [144] Rodríguez, C., Medici, M., Rodriguez, A.V., Mozzi, F., de Valdez, G.F. (2009). Prevention of chronic gastritis by fermented milks made with exopolysaccharide-producing Streptococcus thermophilus strains. Journal of Dairy Science, 92(6), 2423-2434.
  • [145] Marcial, G., Villena, J., Faller, G., Hensel, A., de Valdéz, G.F. (2017). Exopolysaccharide-producing Streptococcus thermophilus CRL1190 reduces the inflammatory response caused by Helicobacter pylori. Beneficial Microbes, 8(3), 451-461.
There are 143 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Papers
Authors

Duygu Zehir Şentürk This is me 0000-0002-0253-6541

Tülin Uçar This is me 0000-0002-6432-3584

Ömer Şimşek This is me 0000-0003-0624-9352

Publication Date December 27, 2022
Submission Date April 8, 2022
Published in Issue Year 2022 Volume: 20 Issue: 4

Cite

APA Zehir Şentürk, D., Uçar, T., & Şimşek, Ö. (2022). Laktik Asit Bakterileri Tarafından Üretilen Ekzopolisakkaritler ve Terapötik Etkileri. Akademik Gıda, 20(4), 412-429. https://doi.org/10.24323/akademik-gida.1224359
AMA Zehir Şentürk D, Uçar T, Şimşek Ö. Laktik Asit Bakterileri Tarafından Üretilen Ekzopolisakkaritler ve Terapötik Etkileri. Akademik Gıda. December 2022;20(4):412-429. doi:10.24323/akademik-gida.1224359
Chicago Zehir Şentürk, Duygu, Tülin Uçar, and Ömer Şimşek. “Laktik Asit Bakterileri Tarafından Üretilen Ekzopolisakkaritler Ve Terapötik Etkileri”. Akademik Gıda 20, no. 4 (December 2022): 412-29. https://doi.org/10.24323/akademik-gida.1224359.
EndNote Zehir Şentürk D, Uçar T, Şimşek Ö (December 1, 2022) Laktik Asit Bakterileri Tarafından Üretilen Ekzopolisakkaritler ve Terapötik Etkileri. Akademik Gıda 20 4 412–429.
IEEE D. Zehir Şentürk, T. Uçar, and Ö. Şimşek, “Laktik Asit Bakterileri Tarafından Üretilen Ekzopolisakkaritler ve Terapötik Etkileri”, Akademik Gıda, vol. 20, no. 4, pp. 412–429, 2022, doi: 10.24323/akademik-gida.1224359.
ISNAD Zehir Şentürk, Duygu et al. “Laktik Asit Bakterileri Tarafından Üretilen Ekzopolisakkaritler Ve Terapötik Etkileri”. Akademik Gıda 20/4 (December 2022), 412-429. https://doi.org/10.24323/akademik-gida.1224359.
JAMA Zehir Şentürk D, Uçar T, Şimşek Ö. Laktik Asit Bakterileri Tarafından Üretilen Ekzopolisakkaritler ve Terapötik Etkileri. Akademik Gıda. 2022;20:412–429.
MLA Zehir Şentürk, Duygu et al. “Laktik Asit Bakterileri Tarafından Üretilen Ekzopolisakkaritler Ve Terapötik Etkileri”. Akademik Gıda, vol. 20, no. 4, 2022, pp. 412-29, doi:10.24323/akademik-gida.1224359.
Vancouver Zehir Şentürk D, Uçar T, Şimşek Ö. Laktik Asit Bakterileri Tarafından Üretilen Ekzopolisakkaritler ve Terapötik Etkileri. Akademik Gıda. 2022;20(4):412-29.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).