Research Article
BibTex RIS Cite

Advanced Statistical Optimization for Enhanced Medium-Chain Fatty Acid Production

Year 2024, Issue: Yeşil Dönüşüm Özel Sayısı, 16 - 25, 23.09.2024
https://doi.org/10.24323/akademik-gida.1554412

Abstract

In recent years, the development of feed ingredients with natural additives has gained significant importance in increasing the health and quality of animal products, as well as in promoting weight gain in animals. Since Salmonella infection is a significant disease that transmits from animals to humans, the inhibition of Salmonella species can be achieved particularly through the improvement of gastrointestinal metabolism in chickens. At this point, the effectiveness of using MCFA (Medium Chain Fatty Acids) as a feed additive has been proven. MCFA are composed of a mixture of various fatty acids, including acetic acid, butyric acid, hexanoic acid, etc. Highest portion of MCFA are hexanoic acid. Besides feed additives hexanoic acid play a crucial role as primary resources in various industries, including the chemical, food, agricultural, and biofuel sectors. It is typically obtained from petrochemical-based solutions but there has been a growing focus on biotechnological production and natural sources in recent years. One of the mostly known bioprocess to produce MCFA is chain elongation (conversion of acetate and ethanol into MCFA by β oxidation reaction) by Clostridium kluyveri. However, as in most biotechnological processes, there are low yields and high costs in these reactions as well. In this study, Box-Behnken Design, a statistical experimental design method, was used to optimize the concentrations of acetate, ethanol (the two primary components of chain elongation reactions) and pH for MCFA production via chain elongation reactions with Clostridium kluyveri. Batch experiments were performed at 30°C and 37°C to also see the effect of temperature. Higher values of hexanoic acid and bacterial growth were observed at 37°C. From an economic perspective, a 14% reduction in costs has been observed with optimized components.

Supporting Institution

The Scientific and Technological Research Council of Türkiye (TÜBİTAK)

Project Number

1919B012222503

Thanks

This project was funded from The Scientific and Technological Research Council of Türkiye (TÜBİTAK) under the Project No: 1919B012222503. The authors also wish to thank TÜBİTAK TEYDEB with project number 2211068.

References

  • [1] FAO Food and Agriculture Organization of the United Nations, Biotechnology: a modern tool for food production improvement - Patrick Heffer. (n.d.). https://www.fao.org/4/y2722e/y2722e1f.htm
  • [2] Kannengiesser, J., Sakaguchi-Söder, K., Mrukwia, T., Jager, J., Schebek, L. (2016). Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels. Waste Management, 47, 78-83.
  • [3] Liu, Y., He, P., Shao, L., Zhang, H., Lu, F. (2017). Significant enhancement by biochar of caproate production via chain elongation. Water Research, 119, 150-159.
  • [4] Reddy, M.V., Mohan, S.V., Chang, Y.C. (2018). Medium-chain fatty acids (MCFA) production through anaerobic fermentation using Clostridium kluyveri: effect of ethanol and acetate. Applied Biochemistry and Biotechnology, 185, 594-605.
  • [5] Sompong, O., Zhu, X., Angelidaki, I., Zhang, S., Luo, G. (2020). Medium chain fatty acids production by microbial chain elongation: recent advances. Advances in Bioenergy, 5, 63-99.
  • [6] Hejdysz, M., Wiąz, M., Zefiak, D., Rutkowski, A. (2012). Effect of medium chain fatty acids (MCFA) on growth performance and nutrient utilization in broiler chickens. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego, 8, 9-17.
  • [7] Coma, M., Martinez-Hernandez, E., Abeln, F., Raikova, S., Donnelly, J., Arnot, T.C., Allen, M.J., Hong, D.D., Chuck, C.J. (2017). Organic waste as a sustainable feedstock for platform chemicals. Faraday Discuss, 202, 175-195.
  • [8] Angenent, L.T., Richter, H., Buckel, W., Spirito, C.M., Steinbusch, K.J.J., Plugge, C.M., Plugge, C.M., Strik, D.P.B.T.B., Grootsholten, T.I.M., Buisman, C.J.N., Hamelers, H.V.M. (2016). Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environmental Science and Technology, 50, 2796–2810.
  • [9] Seedorf, H., Fricke, W.F., Veith, B., Brüggemann, H., Liesegang, H., Strittmatter, A., Miethke, M., Buckel, W., Hinderberger, J., Li, F., Hagemeier, C., Thauer, R.K., Gottschalk, G. (2008). The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proceedings of the National Academy of Sciences, 105, 2128-2133.
  • [10] Steinbusch, K.J.J., Hamelers, H.V.M., Plugge, C.M., and Buisman, C.J.N. (2011). Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy and Environmental Science, 4, 216–224.
  • [11] Chen, W.-S., Strik, D.P.B.T.B., Buisman, C.J.N., and Kroeze, C. (2017). Production of caproic acid from mixed organic waste- an environmental life cycle perspective. Environmental Science and Technology. 51, 7159-7168.
  • [12] Zhu, X., Tao, Y., Liang, C., Li, X., Wei, N., Zhang, W., Zhou, Y., Yang, Y., Bo, T. (2015). The synthesis of n-caproate from lactate: anew efficient process for medium-chain carboxylates production. Scientific Reports, 5 (14360), 1-9.
  • [13] Keskin-Gündoğdu, T., Deniz, I., Çalışkan, G., Şahin, E.S., Azbar, N. (2016). Experimental design methods for bioengineering applications. Critical Reviews in Biotechnology, 36(2), 368-388.
  • [14] Majumder, A., Singh, A., Goyal, A. (2009). Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization. Carbohydrate Polymers, 75, 150–156.
  • [15] Anonymous, (2024) (https://www.dsmz.de/collection/catalogue/details/culture/DSM-555)
  • [16] Ersoy, Ş., Akaçin, İ., Güngörmüşler, M. (2023). Comparative evaluation of the biohydrogen production potential of thermophilic microorganisms isolated from hot springs located in Izmir. International Journal of Hydrogen Energy, 48(60), 22897-22908.
  • [17] YaNan, Y., Zhang Y., Karakashev, D.B., Wang J., W. J., Angelidaki, I. (2017). Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources. Bioresource Technology, 241,632-641.
  • [18] Ge, S., Usack, J.G., Spirito, C.M., Angenent, L.T. (2015). Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction. Environmental Science and Technology, 49(13), 8012-8021.
  • [19] Grootscholten, T.I.M., Steinbusch, K.J.J., Hamelers, H.V.M., Buisman, C.J.N. (2013). Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production. Bioresource Technology, 135, 440-445.
  • [20] Grootscholten, T.I.M., Steinbusch, K.J.J., Hamelers, H.V.M., Buisman, C.J.N. (2013). Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter. Bioresource Technology, 136, 735-738.
  • [21] Grootscholten, T.I.M., Strik, D.P.B.T.B., Steinbusch, K.J.J., Buisman, C.J.N., Hamelers, H.V.M. (2014). Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol. Applied Energy, 116, 223-229.
  • [22] Grootscholten, T.I.M., Kinsky Dal Borgo F., Hamelers, H.V.M. and Buisman, C. (2013). Promoting chain elongation in mixed culture acidification reactors by addition of ethanol. Biomass and Bioenergy, 48, 10-16.
  • [23] Vasudevan, D., Richter, H., Angenent, L.T. (2014). Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes. Bioresource Technology, 151, 378-382.
  • [24] San-Valero, P., Abubackar, H.N., Veiga, M.C., Kennes, C. (2020). Effect of pH, yeast extract and inorganic carbon on chain elongation for hexanoic acid production. Bioresource Technology, 300, 122659-122671.

Orta Zincirli Yağ Asidi Üretiminin Artırılması İçin İleri İstatistiksel Optimizasyon

Year 2024, Issue: Yeşil Dönüşüm Özel Sayısı, 16 - 25, 23.09.2024
https://doi.org/10.24323/akademik-gida.1554412

Abstract

Son yıllarda, doğal katkı maddeleri içeren yem bileşenlerinin geliştirilmesi, hayvan ürünlerinin sağlığını ve kalitesini artırmanın yanı sıra hayvanlarda kilo alımını teşvik etmede önemli bir rol oynamıştır. Salmonella enfeksiyonları, hayvanlardan insanlara bulaşan önemli bir hastalık olduğundan, Salmonella türlerinin inhibe edilmesi özellikle tavukların gastrointestinal metabolizmasının iyileştirilmesiyle sağlanabilir. Bu noktada, orta zincirli yağ asitleri (MCFA) kullanımının bir yem katkı maddesi olarak etkinliği kanıtlanmıştır. MCFA, asetik asit, bütirik asit, hekzanoik asit vb. dahil olmak üzere çeşitli yağ asitlerinin karışımından oluşur. MCFA karışımının en büyük kısmını hekzanoik asit oluşturmaktadır. Yem katkı maddesi olarak kullanımının yanısıra hekzanoik asit, kimya, gıda, tarım ve biyoyakıt sektörleri de dahil olmak üzere çeşitli endüstrilerde birincil kaynak olarak önemli bir rol oynamaktadır. Son yıllarda biyoteknolojik üretim ve doğal kaynaklara giderek daha fazla odaklanılmasına rağmen, tipik olarak petrokimya bazlı çözümlerden elde edilmektedir. Ancak, çoğu biyoteknolojik süreçte olduğu gibi, bu reaksiyonlarda da düşük verim ve yüksek maliyetler söz konusudur. Bu çalışmada, Clostridium kluyveri ile asetat, etanol (zincir uzama reaksiyonlarının iki ana bileşeni) ve pH konsantrasyonlarını optimize etmek için istatistiksel bir deneysel tasarım yöntemi olan Box-Behnken Tasarımı kullanılmıştır. Sıcaklığın etkisini de görmek için 30°C ve 37°C'de toplu deneyler gerçekleştirilmiştir. Daha yüksek hekzanoik asit değerleri ve bakteri büyümesi 37°C'de gözlenmiştir. Ekonomik açıdan ise ortam bileşenlerinin optimizasyonu proses maliyetlerinde %14'lük bir düşüş sağlamıştır.

Project Number

1919B012222503

References

  • [1] FAO Food and Agriculture Organization of the United Nations, Biotechnology: a modern tool for food production improvement - Patrick Heffer. (n.d.). https://www.fao.org/4/y2722e/y2722e1f.htm
  • [2] Kannengiesser, J., Sakaguchi-Söder, K., Mrukwia, T., Jager, J., Schebek, L. (2016). Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels. Waste Management, 47, 78-83.
  • [3] Liu, Y., He, P., Shao, L., Zhang, H., Lu, F. (2017). Significant enhancement by biochar of caproate production via chain elongation. Water Research, 119, 150-159.
  • [4] Reddy, M.V., Mohan, S.V., Chang, Y.C. (2018). Medium-chain fatty acids (MCFA) production through anaerobic fermentation using Clostridium kluyveri: effect of ethanol and acetate. Applied Biochemistry and Biotechnology, 185, 594-605.
  • [5] Sompong, O., Zhu, X., Angelidaki, I., Zhang, S., Luo, G. (2020). Medium chain fatty acids production by microbial chain elongation: recent advances. Advances in Bioenergy, 5, 63-99.
  • [6] Hejdysz, M., Wiąz, M., Zefiak, D., Rutkowski, A. (2012). Effect of medium chain fatty acids (MCFA) on growth performance and nutrient utilization in broiler chickens. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego, 8, 9-17.
  • [7] Coma, M., Martinez-Hernandez, E., Abeln, F., Raikova, S., Donnelly, J., Arnot, T.C., Allen, M.J., Hong, D.D., Chuck, C.J. (2017). Organic waste as a sustainable feedstock for platform chemicals. Faraday Discuss, 202, 175-195.
  • [8] Angenent, L.T., Richter, H., Buckel, W., Spirito, C.M., Steinbusch, K.J.J., Plugge, C.M., Plugge, C.M., Strik, D.P.B.T.B., Grootsholten, T.I.M., Buisman, C.J.N., Hamelers, H.V.M. (2016). Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environmental Science and Technology, 50, 2796–2810.
  • [9] Seedorf, H., Fricke, W.F., Veith, B., Brüggemann, H., Liesegang, H., Strittmatter, A., Miethke, M., Buckel, W., Hinderberger, J., Li, F., Hagemeier, C., Thauer, R.K., Gottschalk, G. (2008). The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proceedings of the National Academy of Sciences, 105, 2128-2133.
  • [10] Steinbusch, K.J.J., Hamelers, H.V.M., Plugge, C.M., and Buisman, C.J.N. (2011). Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy and Environmental Science, 4, 216–224.
  • [11] Chen, W.-S., Strik, D.P.B.T.B., Buisman, C.J.N., and Kroeze, C. (2017). Production of caproic acid from mixed organic waste- an environmental life cycle perspective. Environmental Science and Technology. 51, 7159-7168.
  • [12] Zhu, X., Tao, Y., Liang, C., Li, X., Wei, N., Zhang, W., Zhou, Y., Yang, Y., Bo, T. (2015). The synthesis of n-caproate from lactate: anew efficient process for medium-chain carboxylates production. Scientific Reports, 5 (14360), 1-9.
  • [13] Keskin-Gündoğdu, T., Deniz, I., Çalışkan, G., Şahin, E.S., Azbar, N. (2016). Experimental design methods for bioengineering applications. Critical Reviews in Biotechnology, 36(2), 368-388.
  • [14] Majumder, A., Singh, A., Goyal, A. (2009). Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization. Carbohydrate Polymers, 75, 150–156.
  • [15] Anonymous, (2024) (https://www.dsmz.de/collection/catalogue/details/culture/DSM-555)
  • [16] Ersoy, Ş., Akaçin, İ., Güngörmüşler, M. (2023). Comparative evaluation of the biohydrogen production potential of thermophilic microorganisms isolated from hot springs located in Izmir. International Journal of Hydrogen Energy, 48(60), 22897-22908.
  • [17] YaNan, Y., Zhang Y., Karakashev, D.B., Wang J., W. J., Angelidaki, I. (2017). Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources. Bioresource Technology, 241,632-641.
  • [18] Ge, S., Usack, J.G., Spirito, C.M., Angenent, L.T. (2015). Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction. Environmental Science and Technology, 49(13), 8012-8021.
  • [19] Grootscholten, T.I.M., Steinbusch, K.J.J., Hamelers, H.V.M., Buisman, C.J.N. (2013). Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production. Bioresource Technology, 135, 440-445.
  • [20] Grootscholten, T.I.M., Steinbusch, K.J.J., Hamelers, H.V.M., Buisman, C.J.N. (2013). Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter. Bioresource Technology, 136, 735-738.
  • [21] Grootscholten, T.I.M., Strik, D.P.B.T.B., Steinbusch, K.J.J., Buisman, C.J.N., Hamelers, H.V.M. (2014). Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol. Applied Energy, 116, 223-229.
  • [22] Grootscholten, T.I.M., Kinsky Dal Borgo F., Hamelers, H.V.M. and Buisman, C. (2013). Promoting chain elongation in mixed culture acidification reactors by addition of ethanol. Biomass and Bioenergy, 48, 10-16.
  • [23] Vasudevan, D., Richter, H., Angenent, L.T. (2014). Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes. Bioresource Technology, 151, 378-382.
  • [24] San-Valero, P., Abubackar, H.N., Veiga, M.C., Kennes, C. (2020). Effect of pH, yeast extract and inorganic carbon on chain elongation for hexanoic acid production. Bioresource Technology, 300, 122659-122671.
There are 24 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Enes İçer This is me 0009-0009-6905-9071

Ezgi Sürgevil This is me 0009-0006-8186-4207

Gozde Duman Tac 0000-0002-9427-8235

Mine Güngörmüşler

Tuğba Keskin This is me

Project Number 1919B012222503
Publication Date September 23, 2024
Submission Date June 29, 2024
Acceptance Date August 28, 2024
Published in Issue Year 2024 Issue: Yeşil Dönüşüm Özel Sayısı

Cite

APA İçer, E., Sürgevil, E., Duman Tac, G., Güngörmüşler, M., et al. (2024). Advanced Statistical Optimization for Enhanced Medium-Chain Fatty Acid Production. Akademik Gıda(Yeşil Dönüşüm Özel Sayısı), 16-25. https://doi.org/10.24323/akademik-gida.1554412
AMA İçer E, Sürgevil E, Duman Tac G, Güngörmüşler M, Keskin T. Advanced Statistical Optimization for Enhanced Medium-Chain Fatty Acid Production. Akademik Gıda. September 2024;(Yeşil Dönüşüm Özel Sayısı):16-25. doi:10.24323/akademik-gida.1554412
Chicago İçer, Enes, Ezgi Sürgevil, Gozde Duman Tac, Mine Güngörmüşler, and Tuğba Keskin. “Advanced Statistical Optimization for Enhanced Medium-Chain Fatty Acid Production”. Akademik Gıda, no. Yeşil Dönüşüm Özel Sayısı (September 2024): 16-25. https://doi.org/10.24323/akademik-gida.1554412.
EndNote İçer E, Sürgevil E, Duman Tac G, Güngörmüşler M, Keskin T (September 1, 2024) Advanced Statistical Optimization for Enhanced Medium-Chain Fatty Acid Production. Akademik Gıda Yeşil Dönüşüm Özel Sayısı 16–25.
IEEE E. İçer, E. Sürgevil, G. Duman Tac, M. Güngörmüşler, and T. Keskin, “Advanced Statistical Optimization for Enhanced Medium-Chain Fatty Acid Production”, Akademik Gıda, no. Yeşil Dönüşüm Özel Sayısı, pp. 16–25, September 2024, doi: 10.24323/akademik-gida.1554412.
ISNAD İçer, Enes et al. “Advanced Statistical Optimization for Enhanced Medium-Chain Fatty Acid Production”. Akademik Gıda Yeşil Dönüşüm Özel Sayısı (September 2024), 16-25. https://doi.org/10.24323/akademik-gida.1554412.
JAMA İçer E, Sürgevil E, Duman Tac G, Güngörmüşler M, Keskin T. Advanced Statistical Optimization for Enhanced Medium-Chain Fatty Acid Production. Akademik Gıda. 2024;:16–25.
MLA İçer, Enes et al. “Advanced Statistical Optimization for Enhanced Medium-Chain Fatty Acid Production”. Akademik Gıda, no. Yeşil Dönüşüm Özel Sayısı, 2024, pp. 16-25, doi:10.24323/akademik-gida.1554412.
Vancouver İçer E, Sürgevil E, Duman Tac G, Güngörmüşler M, Keskin T. Advanced Statistical Optimization for Enhanced Medium-Chain Fatty Acid Production. Akademik Gıda. 2024(Yeşil Dönüşüm Özel Sayısı):16-25.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).