Research Article
BibTex RIS Cite

Şeker Havucu (Pastinaca sativa L. subsp. urens) Yaprak ve Meyvelerinin Biyoaktif İçeriği ile in vitro Antioksidan ve Enzim-İnhibitör Potansiyeli

Year 2024, Volume: 22 Issue: 3, 179 - 185, 18.12.2024
https://doi.org/10.24323/akademik-gida.1603538

Abstract

Şeker havucu (Pastinaca sativa L. subsp. urens), Pastinaca cinsinin türlerinden biridir. Bu bitki, dünya çapında geleneksel olarak çeşitli hastalıkların tedavisinde kullanılmakta ve besin değerleri nedeniyle yetiştirilmektedir. Bu çalışmanın amacı, şeker havucu meyve ve yapraklarının antimikrobiyal ve enzim inhibe edici potansiyelleri ile bunların antioksidan aktivitesi, toplam fenolik madde ve flavonoid içerikleri gibi biyoaktif özelliklerini belirlemektir. Toplam fenolik ve flavonoid içerikleri sırasıyla Folin-Ciocalteu ve alüminyum klorür kolorimetrik yöntemleri kullanılarak belirlenmiştir. Yaprak örnekleri arasında en yüksek toplam fenolik madde içeriği (60.94 mg GAE/g özüt) etanol özütünde bulunurken, en yüksek toplam flavonoid içeriği (21.47 mg RuE/g özüt) hekzan özütünde belirlenmiştir. Yaprak etanol özütü sırasıyla 1039±1.35 ve 150.7±0.81 µg/mL IC50 değeriyle en yüksek DPPH ve ABTS radikal süpürücü aktivite göstermiştir. Meyve ve yaprakların etanol ve hekzan özütlerinin Staphylococcus aureus ATCC6538, Micrococcus luteus ATCC9341, Bacillus subtilis ATCC6633, Candida albicans ATCC14053 mikroorganizmalara karşı büyüme inhibisyon zon çapı (mm) 2 mg/mL konsantrasyonda -/-/15/15, -/-/15/14, 10/10/22/15, -/-/15/14 ve MIC değerleri ise sırasıyla -20>/20>/20>/20>, 20>/20>/20>/2.5, 0.625/10/-/-, 20>/20>/20>/20> mg/mL olarak tespit edilmiştir. Diğer mikroorganizmalara karşı herhangi bir antimikrobiyal aktivite tespit edilmemiştir.

References

  • [1] Baytop, T. (1999). Türkiye’de bitkiler ile tedavi. İstanbul Eczacılık Fakültesi Yayınları, İstanbul, 444.
  • [2] Oroojalian, F., Kasra-Kermanshahi, R., Azizi, M., Bassami, M.R. (2010). Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chemistry, 120(3), 765-770.
  • [3] Jovanović, S.Č., Jovanović, O.P., Petrović, G.M., Stojanović, G.S. (2015). Endemic Balkan parsnip Pastinaca hirsuta: the chemical profile of essential oils, headspace volatiles and extracts. Natural Product Communications, 10(4), 1934578X1501000434.
  • [4] Kenari, H.M., Kordafshari, G., Moghimi, M., Eghbalian, F., TaherKhani, D. (2021). Review of pharmacological properties and chemical constituents of Pastinaca sativa. Journal of Pharmacopuncture, 24(1), 14.
  • [5] Walling, A.L., Walling, H.W. (2018). Phytophotodermatitis induced by wild parsnip. Dermatology Online Journal, 24(2), 13030/qt0rc4v2qz.
  • [6] Jensen, T., Hansen, K. (1939). Active spectral range for phytogenic photodermatosis produced by Pastinaca sativa: (dermatitis bullosa striata pratensis, Oppenheim). Archives of Dermatology and Syphilology, 40(4), 566-577.
  • [7] Al-Barwani, F.M., Eltayeb, E.A. (2004). Xanthotoxin and other furanocoumarins as phytoalexins in Pastinaca sativa L. roots. Sultan Qaboos University Journal for Science, 9, 7-17.
  • [8] Atyabi, A.S., Nejatbakhsh, F., Kenari, H.M., Eghbalian, F., Ayati, M.H., Shirbeigi, L. (2018). Persian medicine non-pharmacological therapies for headache: phlebotomy and wet cupping. Journal of Traditional Chinese Medicine, 38(3), 457-464.
  • [9] Jarić, S., Popović, Z., Mačukanović-Jocić, M., Djurdjević, L., Mijatović, M., Karadžić, B., Mitrović, M., Pavlović, P. (2007). An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). Journal of Ethnopharmacology, 111(1), 160-175.
  • [10] Leporatti, M.L., Ivancheva, S. (2003). Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. Journal of Ethnopharmacology, 87(2-3), 123-142.
  • [11] Matejić, J.S., Džamić, A.M., Mihajilov-Krstev, T., Ranđelović, V.N., Krivošej, Z.Đ., Marin, P.D. (2014). Antimicrobial potential of essential oil from Pastinaca sativa L. Biologica Nyssana, 5(1), 31-35.
  • [12] Conforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E., Menichini, F. (2009). Natural and synthetic furanocoumarins as treatment for vitiligo and psoriasis. Current Drug Therapy, 4(1), 38-58.
  • [13] Clarke, G., Ting, K.N., Wiart, C., Fry, J. (2013). High correlation of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants, 2(1), 1-10.
  • [14] Yang, H., Dong, Y., Du, H., Shi, H., Peng, Y., Li, X. (2011). Antioxidant compounds from propolis collected in Anhui, China. Molecules, 16(4), 3444-3455.
  • [15] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237.
  • [16] Chai, T., Mohan, M., Ong, H., Wong, F. (2014). Antioxidant, iron-chelating and anti-glucosidase activities of Typha domingensis Pers (Typhaceae). Tropical Journal of Pharmaceutical Research, 13(1), 67-72.
  • [17] Ellman, G.L., Courtney, K.D., Andres Jr, V., Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95.
  • [18] Jeong, S.H., Ryu, Y.B., Curtis-Long, M.J., Ryu, H.W., Baek, Y.S., Kang, J.E., Lee, W.S., Park, K. H. (2009). Tyrosinase inhibitory polyphenols from roots of Morus lhou. Journal of Agricultural and Food Chemistry, 57(4), 1195-1203.
  • [19] Lordan, S., Smyth, T.J., Soler-Vila, A., Stanton, C., Ross, R.P. (2013). The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chemistry, 141(3), 2170-2176.
  • [20] Özek, G. (2018). Chemical diversity and biological potential of Tanacetum praeteritum subsp. praeteritum essential oils. Journal of the Turkish Chemical Society Section A: Chemistry, 5(2), 493-510.
  • [21] Kenan, T., Semerci, AB., İnceçayır, D., Sağrıoğlu, M.S. (2019). Antimicrobial activity of different flower extracts. Current Perspectives on Medicinal and Aromatic Plants, 2(1), 53-58.
  • [22] Eloff, J.N. (1998). A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Medica, 64(08), 711-713.
  • [23] Sen, A., Batra, A. (2012). Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia azedarach L. International Journal of Current Pharmaceutical Research, 4(2), 67-73.
  • [24] Luk’yanova, L., Storozheva, Z., Proshin, A. (2007). Corrective effect of flavonoid-containing preparation extralife on the development of Parkinson’s syndrome. Bulletin of Experimental Biology and Medicine, 144, 42-45.
  • [25] Leong, L., Shui, G. (2002). An investigation of antioxidant capacity of fruits in Singapore markets. Food Chemistry, 76(1), 69-75
  • [26] Tosun, B., Karadoğan, T., Şanlı, A. (2019). Determination of essential oil content and composition, total phenolic content and antioxidant activities of Pastinaca sativa L. subsp urens (Req. Ex Gordon). Current Perspectives on Medicinal and Aromatic Plants, 2(2), 125-132.
  • [27] Pandey, M.M., Vijayakumar, M., Rastogi, S., Rawat, A.K. (2012). Phenolic content and antioxidant properties of selected Indian spices of Apiaceae. Journal of Herbs, Spices & Medicinal Plants, 18(3), 246-256.
  • [28] Deveci, E., Cayan, G.T., Karakurt, S., Duru, M.E. (2020). Antioxidant, cytotoxic, and enzyme inhibitory activities of Agropyron repens and Crataegus monogyna species. European Journal of Biology, 79(2), 98-105.
  • [29] Raju R,S., Rao GSN,K., Dsnbk, P. (2021). Antidiabetic activity, alpha-amylase and alpha-glucosidase inhibitory effect of Pastinaca sativa extract. Bulletin of Pharmaceutical Sciences, 44(2), 387-395.
  • [30] Saraiva, A.M., Castro, R.H., Cordeiro, R.P., Peixoto Sobrinho, T.J., Castro, V., Amorim, E.L., Xavier, H.S., Pisciottano, M.N. (2011). In vitro evaluation of antioxidant, antimicrobial and toxicity properties of extracts of Schinopsis brasiliensis Engl. (Anacardiaceae). African Journal of Pharmacy and Pharmacology, 5(14), 1724-1731.
  • [31] Ušjak, L., Drobac, M., Ivanov, M., Soković, M., Milenković, M.T., Niketić, M., Petrović, S. (2022). Composition and antimicrobial activity of Pastinaca sativa subsp. sativa, P. sativa subsp. urens and P. hirsuta essential oils. Journal of Essential Oil Research, 1-14.

Bioactive Content and in vitro Antioxidant and Enzyme-Inhibitory Potential of Leaf and Fruits of Parsnip (Pastinaca sativa L. subsp. Urens)

Year 2024, Volume: 22 Issue: 3, 179 - 185, 18.12.2024
https://doi.org/10.24323/akademik-gida.1603538

Abstract

Parsnip (Pastinaca sativa L. subsp. urens) is one of the species of Pastinaca genus. This plant has been traditionally used worldwide for the treatment of various diseases and cultivated for its nutritional values. The aim of this study was to determine the antimicrobial and enzyme-inhibitory potentials of the fruits and leaves of parsnips as well as their bioactive properties such as their antioxidant activities, total phenolic and flavonoid contents in their hexane and ethanol extracts. The total phenolic and flavonoid contents were determined using Folin-Ciocalteu and aluminum chloride colorimetric methods, respectively. The antioxidant activities of extracts were determined by three methods of DPPH and ABTS radical scavenging activities and iron-chelating ability. In the leaves, the highest total phenolic content (60.94 mg GAE/g extract) was found in ethanol extracts while the highest total flavonoid content (21.47 mg RuE/g extract) was determined in hexane extracts. Ethanol extracts of leaves showed the highest radical scavenging activities in both assays of DPPH and ABTS with the IC50 values of 1039±1.35 and 150.7±0.81 µg/mL, respectively. Growth inhibition zone diameters (mm) of PSFE, PSLE, PSFH, PSLH (2 mg/mL) against reference microorganisms were -/-/15/15, -/-/15/14, 10/10/22/15, -/-/15/14 and MIC values -20>/20>/20>/20>, 20>/20>/20>/2.5, 0.625/10/-/-, 20>/20>/20>/20> mg/mL for Staphylococcus aureus ATCC6538, Micrococcus luteus ATCC9341, Bacillus subtilis ATCC6633, Candida albicans ATCC14053, respectively. Antimicrobial activity was not determined against other reference microorganisms.

References

  • [1] Baytop, T. (1999). Türkiye’de bitkiler ile tedavi. İstanbul Eczacılık Fakültesi Yayınları, İstanbul, 444.
  • [2] Oroojalian, F., Kasra-Kermanshahi, R., Azizi, M., Bassami, M.R. (2010). Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chemistry, 120(3), 765-770.
  • [3] Jovanović, S.Č., Jovanović, O.P., Petrović, G.M., Stojanović, G.S. (2015). Endemic Balkan parsnip Pastinaca hirsuta: the chemical profile of essential oils, headspace volatiles and extracts. Natural Product Communications, 10(4), 1934578X1501000434.
  • [4] Kenari, H.M., Kordafshari, G., Moghimi, M., Eghbalian, F., TaherKhani, D. (2021). Review of pharmacological properties and chemical constituents of Pastinaca sativa. Journal of Pharmacopuncture, 24(1), 14.
  • [5] Walling, A.L., Walling, H.W. (2018). Phytophotodermatitis induced by wild parsnip. Dermatology Online Journal, 24(2), 13030/qt0rc4v2qz.
  • [6] Jensen, T., Hansen, K. (1939). Active spectral range for phytogenic photodermatosis produced by Pastinaca sativa: (dermatitis bullosa striata pratensis, Oppenheim). Archives of Dermatology and Syphilology, 40(4), 566-577.
  • [7] Al-Barwani, F.M., Eltayeb, E.A. (2004). Xanthotoxin and other furanocoumarins as phytoalexins in Pastinaca sativa L. roots. Sultan Qaboos University Journal for Science, 9, 7-17.
  • [8] Atyabi, A.S., Nejatbakhsh, F., Kenari, H.M., Eghbalian, F., Ayati, M.H., Shirbeigi, L. (2018). Persian medicine non-pharmacological therapies for headache: phlebotomy and wet cupping. Journal of Traditional Chinese Medicine, 38(3), 457-464.
  • [9] Jarić, S., Popović, Z., Mačukanović-Jocić, M., Djurdjević, L., Mijatović, M., Karadžić, B., Mitrović, M., Pavlović, P. (2007). An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). Journal of Ethnopharmacology, 111(1), 160-175.
  • [10] Leporatti, M.L., Ivancheva, S. (2003). Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. Journal of Ethnopharmacology, 87(2-3), 123-142.
  • [11] Matejić, J.S., Džamić, A.M., Mihajilov-Krstev, T., Ranđelović, V.N., Krivošej, Z.Đ., Marin, P.D. (2014). Antimicrobial potential of essential oil from Pastinaca sativa L. Biologica Nyssana, 5(1), 31-35.
  • [12] Conforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E., Menichini, F. (2009). Natural and synthetic furanocoumarins as treatment for vitiligo and psoriasis. Current Drug Therapy, 4(1), 38-58.
  • [13] Clarke, G., Ting, K.N., Wiart, C., Fry, J. (2013). High correlation of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants, 2(1), 1-10.
  • [14] Yang, H., Dong, Y., Du, H., Shi, H., Peng, Y., Li, X. (2011). Antioxidant compounds from propolis collected in Anhui, China. Molecules, 16(4), 3444-3455.
  • [15] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237.
  • [16] Chai, T., Mohan, M., Ong, H., Wong, F. (2014). Antioxidant, iron-chelating and anti-glucosidase activities of Typha domingensis Pers (Typhaceae). Tropical Journal of Pharmaceutical Research, 13(1), 67-72.
  • [17] Ellman, G.L., Courtney, K.D., Andres Jr, V., Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95.
  • [18] Jeong, S.H., Ryu, Y.B., Curtis-Long, M.J., Ryu, H.W., Baek, Y.S., Kang, J.E., Lee, W.S., Park, K. H. (2009). Tyrosinase inhibitory polyphenols from roots of Morus lhou. Journal of Agricultural and Food Chemistry, 57(4), 1195-1203.
  • [19] Lordan, S., Smyth, T.J., Soler-Vila, A., Stanton, C., Ross, R.P. (2013). The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chemistry, 141(3), 2170-2176.
  • [20] Özek, G. (2018). Chemical diversity and biological potential of Tanacetum praeteritum subsp. praeteritum essential oils. Journal of the Turkish Chemical Society Section A: Chemistry, 5(2), 493-510.
  • [21] Kenan, T., Semerci, AB., İnceçayır, D., Sağrıoğlu, M.S. (2019). Antimicrobial activity of different flower extracts. Current Perspectives on Medicinal and Aromatic Plants, 2(1), 53-58.
  • [22] Eloff, J.N. (1998). A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Medica, 64(08), 711-713.
  • [23] Sen, A., Batra, A. (2012). Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia azedarach L. International Journal of Current Pharmaceutical Research, 4(2), 67-73.
  • [24] Luk’yanova, L., Storozheva, Z., Proshin, A. (2007). Corrective effect of flavonoid-containing preparation extralife on the development of Parkinson’s syndrome. Bulletin of Experimental Biology and Medicine, 144, 42-45.
  • [25] Leong, L., Shui, G. (2002). An investigation of antioxidant capacity of fruits in Singapore markets. Food Chemistry, 76(1), 69-75
  • [26] Tosun, B., Karadoğan, T., Şanlı, A. (2019). Determination of essential oil content and composition, total phenolic content and antioxidant activities of Pastinaca sativa L. subsp urens (Req. Ex Gordon). Current Perspectives on Medicinal and Aromatic Plants, 2(2), 125-132.
  • [27] Pandey, M.M., Vijayakumar, M., Rastogi, S., Rawat, A.K. (2012). Phenolic content and antioxidant properties of selected Indian spices of Apiaceae. Journal of Herbs, Spices & Medicinal Plants, 18(3), 246-256.
  • [28] Deveci, E., Cayan, G.T., Karakurt, S., Duru, M.E. (2020). Antioxidant, cytotoxic, and enzyme inhibitory activities of Agropyron repens and Crataegus monogyna species. European Journal of Biology, 79(2), 98-105.
  • [29] Raju R,S., Rao GSN,K., Dsnbk, P. (2021). Antidiabetic activity, alpha-amylase and alpha-glucosidase inhibitory effect of Pastinaca sativa extract. Bulletin of Pharmaceutical Sciences, 44(2), 387-395.
  • [30] Saraiva, A.M., Castro, R.H., Cordeiro, R.P., Peixoto Sobrinho, T.J., Castro, V., Amorim, E.L., Xavier, H.S., Pisciottano, M.N. (2011). In vitro evaluation of antioxidant, antimicrobial and toxicity properties of extracts of Schinopsis brasiliensis Engl. (Anacardiaceae). African Journal of Pharmacy and Pharmacology, 5(14), 1724-1731.
  • [31] Ušjak, L., Drobac, M., Ivanov, M., Soković, M., Milenković, M.T., Niketić, M., Petrović, S. (2022). Composition and antimicrobial activity of Pastinaca sativa subsp. sativa, P. sativa subsp. urens and P. hirsuta essential oils. Journal of Essential Oil Research, 1-14.
There are 31 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Nuraniye Eruygur

Yavuz Bağcı 0000-0002-7714-856X

Süleyman Doğu 0000-0002-5352-9288

Nevin Tuzcu 0000-0001-5899-3955

Publication Date December 18, 2024
Submission Date April 27, 2023
Published in Issue Year 2024 Volume: 22 Issue: 3

Cite

APA Eruygur, N., Bağcı, Y., Doğu, S., Tuzcu, N. (2024). Bioactive Content and in vitro Antioxidant and Enzyme-Inhibitory Potential of Leaf and Fruits of Parsnip (Pastinaca sativa L. subsp. Urens). Akademik Gıda, 22(3), 179-185. https://doi.org/10.24323/akademik-gida.1603538
AMA Eruygur N, Bağcı Y, Doğu S, Tuzcu N. Bioactive Content and in vitro Antioxidant and Enzyme-Inhibitory Potential of Leaf and Fruits of Parsnip (Pastinaca sativa L. subsp. Urens). Akademik Gıda. December 2024;22(3):179-185. doi:10.24323/akademik-gida.1603538
Chicago Eruygur, Nuraniye, Yavuz Bağcı, Süleyman Doğu, and Nevin Tuzcu. “Bioactive Content and in Vitro Antioxidant and Enzyme-Inhibitory Potential of Leaf and Fruits of Parsnip (Pastinaca Sativa L. Subsp. Urens)”. Akademik Gıda 22, no. 3 (December 2024): 179-85. https://doi.org/10.24323/akademik-gida.1603538.
EndNote Eruygur N, Bağcı Y, Doğu S, Tuzcu N (December 1, 2024) Bioactive Content and in vitro Antioxidant and Enzyme-Inhibitory Potential of Leaf and Fruits of Parsnip (Pastinaca sativa L. subsp. Urens). Akademik Gıda 22 3 179–185.
IEEE N. Eruygur, Y. Bağcı, S. Doğu, and N. Tuzcu, “Bioactive Content and in vitro Antioxidant and Enzyme-Inhibitory Potential of Leaf and Fruits of Parsnip (Pastinaca sativa L. subsp. Urens)”, Akademik Gıda, vol. 22, no. 3, pp. 179–185, 2024, doi: 10.24323/akademik-gida.1603538.
ISNAD Eruygur, Nuraniye et al. “Bioactive Content and in Vitro Antioxidant and Enzyme-Inhibitory Potential of Leaf and Fruits of Parsnip (Pastinaca Sativa L. Subsp. Urens)”. Akademik Gıda 22/3 (December 2024), 179-185. https://doi.org/10.24323/akademik-gida.1603538.
JAMA Eruygur N, Bağcı Y, Doğu S, Tuzcu N. Bioactive Content and in vitro Antioxidant and Enzyme-Inhibitory Potential of Leaf and Fruits of Parsnip (Pastinaca sativa L. subsp. Urens). Akademik Gıda. 2024;22:179–185.
MLA Eruygur, Nuraniye et al. “Bioactive Content and in Vitro Antioxidant and Enzyme-Inhibitory Potential of Leaf and Fruits of Parsnip (Pastinaca Sativa L. Subsp. Urens)”. Akademik Gıda, vol. 22, no. 3, 2024, pp. 179-85, doi:10.24323/akademik-gida.1603538.
Vancouver Eruygur N, Bağcı Y, Doğu S, Tuzcu N. Bioactive Content and in vitro Antioxidant and Enzyme-Inhibitory Potential of Leaf and Fruits of Parsnip (Pastinaca sativa L. subsp. Urens). Akademik Gıda. 2024;22(3):179-85.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).