İçeceklerde Askorbik ve Oksalik Asitlerin Eşzamanlı Analizi İçin HPLC-UV Yönteminin Validasyonu
Year 2024,
Volume: 22 Issue: 4, 273 - 281, 31.12.2024
Gülşen Aksin Biltekin
Abdullah Akdoğan
,
Mustafa Soylak
,
Ümit Divrikli
Abstract
Ters faz yüksek performanslı sıvı kromatografisi (RP/HPLC-UV) yöntemi, endüstriyel ve taze sıkılmış içeceklerde askorbik ve oksalik asitlerin hızlı ve eş zamanlı analizi için geliştirilmiştir. Askorbik asidin hızlı bozulması nedeniyle, stabilitesi de araştırılmıştır. Analiz, pH 2.3’te 0.01 mol L⁻¹ KH₂PO₄ fosfat tamponundan oluşan hareketli faz ile Inertsil ODS-3 kolon kullanılarak gerçekleştirilmiştir. Tespit dalga boyları askorbik asit için 245 nm ve oksalik asit için 205 nm olarak ayarlanmıştır. Tespit limitleri (LOD), askorbik asit için 1.4 mg L⁻¹ ve oksalik asit için 1.3 mg L⁻¹ olarak belirlenmiştir. Endüstriyel meyve suyu paketinin açılmasından 48 saat sonra, askorbik asit içeriğinde %18.5’lik bir azalma tespit edilmiştir. Yöntem, gün içi tekrarlanabilirlik (n= 3) açısından askorbik asit için %4.1 ve oksalik asit için %4.6 oranında bir doğruluk göstermiştir. Günler arası hassasiyet, bağıl standart sapma (RSD) olarak ifade edilmiş ve 10 tekrar (n= 10) temelinde askorbik asit için %3.85 ve oksalik asit için %4.33 olarak hesaplanmıştır. Yöntemin doğruluğu, %93 ile %104 arasında değişen ortalama geri kazanım oranı ile doğrulanmıştır.
Supporting Institution
Pamukkale University
Project Number
2023FEBE020
Thanks
The authors would like to thank the Pamukkale University for financial support to this research project (Project no 2023FEBE020).
References
- [1] Naidu, K.A. (2003). Vitamin C in human health and disease is still a mystery? An overview. Nutrition Journal, 2, 1-10.
- [2] Diplock, A.T. (1991). Antioxidant nutrients and disease prevention: an overview. The American Journal of Clinical Nutrition, 53(1 Suppl), 189S-193S.
- [3] Gümüşay, Ö.A., Yalçın, M.Y. (2019). Effects of freeze-drying process on antioxidant and some physical properties of cherry laurel and kiwi fruits. Akademik Gıda, 17(1), 9-15.
- [4] Demiray, E., Tülek, Y. (2020). Color and ascorbic acid degradation kinetics of red pepper (Capsicum annuum L.) slices during vacuum drying. Akademik Gıda, 18(1), 19-26.
- [5] Oluk, C.A., Akyıldız, A., Ağçam, E., Keleş, D., Ata, A. (2012). Farklı domates çeşitlerinin bazı kalite özellikleri. Akademik Gıda, 10(3), 26-31.
- [6] Chang, S., Ismail, A., Daud, Z. (2016). Ascorbic acid: properties, determination and uses. Encyclopedia of Food and Health, 275-284.
- [7] Veltman, R., Kho, R., Van Schaik, A., Sanders, M., Oosterhaven, J. (2000). Ascorbic acid and tissue browning in pears (Pyrus communis L. cvs Rocha and Conference) under controlled atmosphere conditions. Postharvest Biology and Technology, 19(2), 129-137.
- [8] Önder, E., Koparal, A.S., Öğütveren, Ü.B. (2009). Electrochemical treatment of aqueous oxalic acid solution by using solid polymer electrolyte (SPE) reactor. Chemical Engineering Journal, 147(2-3), 122-129.
- [9] Safavi, A., Banazadeh, A. (2007). Catalytic determination of traces of oxalic acid in vegetables and water samples using a novel optode. Food chemistry, 105(3), 1106-1111.
- [10] Janghel, E., Gupta, V., Rai, M., Rai, J. (2007). Micro determination of ascorbic acid using methyl viologen. Talanta, 72(3), 1013-1016.
- [11] Wu, L., Li, F., Yu, H., Shen, L., Wang, M. (2023). Facile and rapid determination of oxalic acid by fading spectrophotometry based on Fe (III)-sulfosalicylate as colorimetric chemosensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 284, 121784.
- [12] Luo, X., Chen, L., Yang, J., Li, S., Li, M., Mo, Q., Li, X. (2021). Electrochemically simultaneous detection of ascorbic acid, sulfite and oxalic acid on Pt-Pd nanoparticles/chitosan/nitrogen doped graphene modified glassy carbon electrode: A method for drug quality control. Microchemical Journal, 169, 106623.
- [13] Cai, W., Lai, T., Du, H., Ye, J. (2014). Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. Sensors and Actuators B: Chemical, 193, 492-500.
- [14] Xu, H., Liu, X., Qin, J., Dong, L., Gao, S., Hou, F., Lin, N. (2021). Nitrogen-doped hierarchical porous carbon nanomaterial from cellulose nanocrystals for voltammetric determination of ascorbic acid. Microchemical Journal, 168, 106494.
- [15] Broncová, G., Prokopec, V., Shishkanova, T.V. (2021). Potentiometric electronic tongue for pharmaceutical analytics: Determination of ascorbic acid based on electropolymerized films. Chemosensors, 9(5), 110.
- [16] Moghaddam, H.D., Khani, R., Khodaei, B. (2022). Liquid-phase microextraction of ascorbic acid in food and pharmaceutical samples using ferrofluid-based on cobalt ferrite (CoFe2O4) nanoparticles. Microchemical Journal, 183, 108006.
- [17] Shi, H., Li, X., Li, Y., Feng, S. (2023). Carbon dots derived from peptone as “off-on” fluorescent probes for the detection of oxalic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 287, 122038.
- [18] Nováková, L., Solich, P., Solichová, D. (2008). HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. TrAC Trends in Analytical Chemistry, 27(10), 942-958.
- [19] Kanďár, R., Drábková, P., Hampl, R. (2011). The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection. Journal of Chromatography B, 879(26), 2834-2839.
- [20] Peng, J., Ling, J., Zhang, X.-Q., Zhang, L.-Y., Cao, Q.-E., Ding, Z.-T. (2015). A rapid, sensitive and selective colorimetric method for detection of ascorbic acid. Sensors and Actuators B: Chemical, 221, 708-716.
- [21] Chinnici, F., Spinabelli, U., Riponi, C., Amati, A. (2005). Optimization of the determination of organic acids and sugars in fruit juices by ion-exclusion liquid chromatography. Journal of Food Composition and Analysis, 18(2-3), 121-130.
- [22] Ribani, M., Bottoli, C.B.G., Collins, C.H., Jardim, I.C.S.F., Melo, L.F.C. (2004). Validation for chromatographic and electrophoretic methods. Química Nova, 27, 771-780.
- [23] Guideline, I.H.T. (2005). Validation of analytical procedures: text and methodology. Q2 (R1), 1(20), 05.
- [24] Sharma, P.B., Devi, H.S. (2018). Optimization of an HPLC method for the simultaneous quantification of the major organic acids in different fruit extracts. Journal of Pharmacognosy and Phytochemistry, 7(6), 611-616.
- [25] FAO/WHO (2007). FAO/WHO Framework for the Provision of Scientific Advice on Food Safety and Nutrition: Food and Agriculture Organization of The United Nations, Rome/Geneva.
- [26] Scherer, R., Rybka, A.C.P., Ballus, C.A., Meinhart, A.D., Teixeira Filho, J., Godoy, H.T. (2012). Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chemistry, 135(1), 150-154.
- [27] Büyüktuncel, E., Kalkan, Ö., Şahin, E. (2017). Determination of organic acids in natural and commercial orange juices by HPLC/DAD. Hacettepe Journal of Biology and Chemistry, 45(3), 411-416.
- [28] Kelebek, H., Selli, S., Canbas, A., Cabaroglu, T. (2009). HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan. Microchemical Journal, 91(2), 187-192.
- [29] Bengü, A.Ş. (2014). Piyasadan temin edilen meyve suları ve soğuk çaylarda C vitamini, Fe, Zn, Na ve K minerallerinin düzeylerinin tespiti. Türkiye Doğa ve Fen Dergisi, 3(1), 39-42.
- [30] Zuo, R., Zhou, S., Zuo, Y., Deng, Y. (2015). Determination of creatinine, uric and ascorbic acid in bovine milk and orange juice by hydrophilic interaction HPLC. Food Chemistry, 182, 242-245.
- [31] Shui, G., Leong, L.P. (2002). Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography. Journal of Chromatography A, 977(1), 89-96.
Validation of an HPLC-UV Method for Simultaneous Analysis of Ascorbic and Oxalic Acids in Beverages
Year 2024,
Volume: 22 Issue: 4, 273 - 281, 31.12.2024
Gülşen Aksin Biltekin
Abdullah Akdoğan
,
Mustafa Soylak
,
Ümit Divrikli
Abstract
A reversed-phase high-performance liquid chromatography (RP/HPLC-UV) method was developed for the rapid and simultaneous analysis of ascorbic and oxalic acids in both industrial and freshly squeezed beverages. Due to the rapid degradation of ascorbic acid, its stability was also investigated. The analysis was performed using an Inertsil ODS-3 column with a mobile phase consisting of 0.01 mol L⁻¹ KH₂PO₄ phosphate buffer at pH 2.3. Detection wavelengths were set at 245 nm for ascorbic acid and 205 nm for oxalic acid. The limits of detection (LOD) were 1.4 mg L⁻¹ for ascorbic acid and 1.3 mg L⁻¹ for oxalic acid. After 48 hours of opening an industrial fruit juice package, an 18.5% reduction in ascorbic acid content was found. The method demonstrated within-day repeatability (n = 3) of 4.1% for ascorbic acid and 4.6% for oxalic acid. Between-day precision, expressed as relative standard deviation (RSD), was 3.85% for ascorbic acid and 4.33% for oxalic acid, based on 10 replicates (n= 10). The accuracy of the method was validated with an average recovery rate ranging from 93% to 104%.
Project Number
2023FEBE020
References
- [1] Naidu, K.A. (2003). Vitamin C in human health and disease is still a mystery? An overview. Nutrition Journal, 2, 1-10.
- [2] Diplock, A.T. (1991). Antioxidant nutrients and disease prevention: an overview. The American Journal of Clinical Nutrition, 53(1 Suppl), 189S-193S.
- [3] Gümüşay, Ö.A., Yalçın, M.Y. (2019). Effects of freeze-drying process on antioxidant and some physical properties of cherry laurel and kiwi fruits. Akademik Gıda, 17(1), 9-15.
- [4] Demiray, E., Tülek, Y. (2020). Color and ascorbic acid degradation kinetics of red pepper (Capsicum annuum L.) slices during vacuum drying. Akademik Gıda, 18(1), 19-26.
- [5] Oluk, C.A., Akyıldız, A., Ağçam, E., Keleş, D., Ata, A. (2012). Farklı domates çeşitlerinin bazı kalite özellikleri. Akademik Gıda, 10(3), 26-31.
- [6] Chang, S., Ismail, A., Daud, Z. (2016). Ascorbic acid: properties, determination and uses. Encyclopedia of Food and Health, 275-284.
- [7] Veltman, R., Kho, R., Van Schaik, A., Sanders, M., Oosterhaven, J. (2000). Ascorbic acid and tissue browning in pears (Pyrus communis L. cvs Rocha and Conference) under controlled atmosphere conditions. Postharvest Biology and Technology, 19(2), 129-137.
- [8] Önder, E., Koparal, A.S., Öğütveren, Ü.B. (2009). Electrochemical treatment of aqueous oxalic acid solution by using solid polymer electrolyte (SPE) reactor. Chemical Engineering Journal, 147(2-3), 122-129.
- [9] Safavi, A., Banazadeh, A. (2007). Catalytic determination of traces of oxalic acid in vegetables and water samples using a novel optode. Food chemistry, 105(3), 1106-1111.
- [10] Janghel, E., Gupta, V., Rai, M., Rai, J. (2007). Micro determination of ascorbic acid using methyl viologen. Talanta, 72(3), 1013-1016.
- [11] Wu, L., Li, F., Yu, H., Shen, L., Wang, M. (2023). Facile and rapid determination of oxalic acid by fading spectrophotometry based on Fe (III)-sulfosalicylate as colorimetric chemosensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 284, 121784.
- [12] Luo, X., Chen, L., Yang, J., Li, S., Li, M., Mo, Q., Li, X. (2021). Electrochemically simultaneous detection of ascorbic acid, sulfite and oxalic acid on Pt-Pd nanoparticles/chitosan/nitrogen doped graphene modified glassy carbon electrode: A method for drug quality control. Microchemical Journal, 169, 106623.
- [13] Cai, W., Lai, T., Du, H., Ye, J. (2014). Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. Sensors and Actuators B: Chemical, 193, 492-500.
- [14] Xu, H., Liu, X., Qin, J., Dong, L., Gao, S., Hou, F., Lin, N. (2021). Nitrogen-doped hierarchical porous carbon nanomaterial from cellulose nanocrystals for voltammetric determination of ascorbic acid. Microchemical Journal, 168, 106494.
- [15] Broncová, G., Prokopec, V., Shishkanova, T.V. (2021). Potentiometric electronic tongue for pharmaceutical analytics: Determination of ascorbic acid based on electropolymerized films. Chemosensors, 9(5), 110.
- [16] Moghaddam, H.D., Khani, R., Khodaei, B. (2022). Liquid-phase microextraction of ascorbic acid in food and pharmaceutical samples using ferrofluid-based on cobalt ferrite (CoFe2O4) nanoparticles. Microchemical Journal, 183, 108006.
- [17] Shi, H., Li, X., Li, Y., Feng, S. (2023). Carbon dots derived from peptone as “off-on” fluorescent probes for the detection of oxalic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 287, 122038.
- [18] Nováková, L., Solich, P., Solichová, D. (2008). HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. TrAC Trends in Analytical Chemistry, 27(10), 942-958.
- [19] Kanďár, R., Drábková, P., Hampl, R. (2011). The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection. Journal of Chromatography B, 879(26), 2834-2839.
- [20] Peng, J., Ling, J., Zhang, X.-Q., Zhang, L.-Y., Cao, Q.-E., Ding, Z.-T. (2015). A rapid, sensitive and selective colorimetric method for detection of ascorbic acid. Sensors and Actuators B: Chemical, 221, 708-716.
- [21] Chinnici, F., Spinabelli, U., Riponi, C., Amati, A. (2005). Optimization of the determination of organic acids and sugars in fruit juices by ion-exclusion liquid chromatography. Journal of Food Composition and Analysis, 18(2-3), 121-130.
- [22] Ribani, M., Bottoli, C.B.G., Collins, C.H., Jardim, I.C.S.F., Melo, L.F.C. (2004). Validation for chromatographic and electrophoretic methods. Química Nova, 27, 771-780.
- [23] Guideline, I.H.T. (2005). Validation of analytical procedures: text and methodology. Q2 (R1), 1(20), 05.
- [24] Sharma, P.B., Devi, H.S. (2018). Optimization of an HPLC method for the simultaneous quantification of the major organic acids in different fruit extracts. Journal of Pharmacognosy and Phytochemistry, 7(6), 611-616.
- [25] FAO/WHO (2007). FAO/WHO Framework for the Provision of Scientific Advice on Food Safety and Nutrition: Food and Agriculture Organization of The United Nations, Rome/Geneva.
- [26] Scherer, R., Rybka, A.C.P., Ballus, C.A., Meinhart, A.D., Teixeira Filho, J., Godoy, H.T. (2012). Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chemistry, 135(1), 150-154.
- [27] Büyüktuncel, E., Kalkan, Ö., Şahin, E. (2017). Determination of organic acids in natural and commercial orange juices by HPLC/DAD. Hacettepe Journal of Biology and Chemistry, 45(3), 411-416.
- [28] Kelebek, H., Selli, S., Canbas, A., Cabaroglu, T. (2009). HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan. Microchemical Journal, 91(2), 187-192.
- [29] Bengü, A.Ş. (2014). Piyasadan temin edilen meyve suları ve soğuk çaylarda C vitamini, Fe, Zn, Na ve K minerallerinin düzeylerinin tespiti. Türkiye Doğa ve Fen Dergisi, 3(1), 39-42.
- [30] Zuo, R., Zhou, S., Zuo, Y., Deng, Y. (2015). Determination of creatinine, uric and ascorbic acid in bovine milk and orange juice by hydrophilic interaction HPLC. Food Chemistry, 182, 242-245.
- [31] Shui, G., Leong, L.P. (2002). Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography. Journal of Chromatography A, 977(1), 89-96.