Effect of Black Mulberry (Morus nigra) Consumption on Antioxidant Capacity and Inflammation in Patients Mild-to-Moderate Alzheimer’s Dementia: A Randomized Clinical Pilot Study
Year 2025,
Volume: 23 Issue: 3, 173 - 183, 30.09.2025
Yeliz Güçer
,
Mehmet İlkin Naharci
,
Neslişah Rakıcıoğlu
,
Zeynep Göktaş
Abstract
This study aimed to determine the effect of black mulberry (Morus nigra) on antioxidant capacity and inflammation in patients with Alzheimer’s Dementia (AD). We randomly assigned older adults with mild-to-moderate AD (n=44) to the intervention or control group. An intervention group was administered 20 g of black mulberry concentrate daily for 12 weeks. This study was completed by 20 participants in the intervention group and 19 in the control group. At the beginning and end of the study, the serum levels of superoxide dismutase (SOD) enzyme, Total Oxidant Status (TOS), Total Antioxidant Status (TAS), and oxidative stress index were determined. To evaluate inflammation, serum Interleukin 1-beta (IL-1 beta) and Transforming Growth Factor-beta (TGF-β) levels were measured. Furthermore, 3-day food records were obtained and dTAC was calculated on the basis of oxygen radical absorption capacity (ORAC), Trolox® equivalent antioxidant capacity (TEAC), Total Radical Trapping Antioxidant Parameter (TRAP), Ferric Reducing Antioxidant Potential (FRAP) and Total Phenolic (TP). There were no significant changes in SOD, TGF-β, IL-1 and TAS serum levels from baseline to the end of the study. However, a statistically significant increase was found in the TOS and oxidative stress index levels for only control group (p<0.05). There were significant increases in the intervention group for dietary T-ORAC, H-ORAC, TEAC, TRAP, FRAP-2, FRAP-3, and dTAC (p=0.003). However, no significant relationship was found between serum inflammation markers and dietary antioxidants or dTAC. In conclusion, black mulberry had a limited effect on antioxidant capacity and inflammation in older adults with mild-to-moderate AD.
Ethical Statement
This study was approved by the ethics committee of Ankara Numune Education and Research Hospital (date: 02/07/2018 and number:18-2325) and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Further permits and clinical trial registration were acquired from the Ministry of Health (Number: 66175679-514.11.01-E.33211 Clinical Research 8-AKD-167, date: 10/04/2019), (Number: 50687469-799, date: 06/20/2019). Written informed consent was obtained from all subjects.
References
-
[1] Chen, S., Zhou, H., Zhang, G., Meng, J., Deng, K., Zhou, W., Wang, H.,Wang, Z., Hu, N., Suo, Y. (2019). Anthocyanins from Lycium ruthenicum Murr. ameliorated d-galactose-induced memory impairment, oxidative stress, and neuroinflammation in adult rats. Journal of Agricultural and Food Chemistry, 67(11), 3140–3149.
-
[2] Jomova, K., Vondrakova, D., Lawson, M., Valko, M. (2010). Metals, oxidative stress and neurodegenerative disorders. Molecular and Cellular Biochemistry, 345(1-2),91-104.
-
[3] Afzal, M., Redha, A., AlHasan, R. (2019). Anthocyanins potentially contribute to defense against Alzheimer's disease. Molecules, 24(23), 4255.
-
[4] Ebrahimi, A., Schluesener, H. (2012). Natural Phenols against neurodegenerative disorders: potentials and pitfalls. Ageing Research Reviews, 11(2), 329-345.
-
[5] Zhang, J., Wu, J., Liu, F., Tong, L., Chen,Z.,Chen, J., He, H., Xu, R., Ma,Y., Huang, C. (2019). Neuroprotective effects of anthocyanins and its major component cyanidin-3-O-glucoside (C3G) in the central nervous system: An outlined review. European Journal of Pharmacology, 858, 172500.
-
[6] Ullah, R., Khan, M., Shah, S.A., Kamran, S., Myeong, O.K. (2019). A hidden therapeutic candidate in metabolic disorders with major focus in neurodegeneration. Nutrients, 11(6), 1195.
-
[7] Winter, A.N., Bickford, P.C. (2019). Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease. Antioxidants (Basel), 8(9), 333.
-
[8] Ma, H., Johnson, S.L., Liu, W.,Dasilva, N.A., MeschwitzS., Dain, J.A., Seeram, N.P. (2018). Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, Blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti-β-amyloid aggregation, and microglial neuroprotective effects. International Journal of Molecular Sciences,19(2), 461.
-
[9] Khan, M.S., Ali, T., Kim, M.W., Jo, M.H., Chung, J., Kim,M.O. (2019). Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Molecular Neurobiology, 56(1), 671-687.
-
[10] Pacheco, S.M., Azambuja, J.H., Carvalho,T.H.,Soares, M.S.P., Oliveira, P.S., Silveira, E.F., Stefanello, F.M., Braganhol, E., Gutierres, J.M., Spanevello, R.M. (2018). Glioprotective effects of lingonberry extract against altered cellular viability, acetylcholinesterase activity, and oxidative stress in lipopolysaccharide-treated astrocytes. Cellular and Molecular Neurobiology, 38(5), 1107-1121.
-
[11] Cásedas, G., Bennet, A.C., Burgos, E.G., Serranillos, M.P., Lopez, V., Smith, C. (2019). Polyphenol-associated oxidative stress and inflammation in a model of LPS-induced inflammation in glial cells: do we know enough for responsible compounding? Inflammopharmacology, 27(1), 189-197.
-
[12] Lim, S.H., Choi, C. (2019). Pharmacological properties of Morus nigra L. (Black Mulberry) as a promising nutraceutical resource. Nutrients, 11(2), 437.
-
[13] Carlsen, M.H., Halvorsen, B.L., Holte, K., Bohn, S.K., Dragland, S., Sampson, L., Willey, C., Senoo, H., Umezono, Y., Sanada, C., Barikmo, I., Berhe, N., Willet, W.C., Philips, K.M., Jacops, D.R., Blomhoff, R. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutritional Journal, 9(3), 2-11.
-
[14] Halvorsen, B.L., Carlsen, M.H., Philips, K.M., Bohn, S.K., Holte, K., Jacops, D., Blomhoff, R. (2006). Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. The American Journal of Clinical Nutrition, 84(1), 95-135.
-
[15] Pellegrini, N., Serafini, M., Colombi, B., Rio,D., Salvatore, S., Bianchi, M., Brighenti, F. (2003). Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. Journal of Nutrition, 133(9), 2812-2819.
-
[16] Pellegrini, N., Serafini,M., Salvatore, S., Rio, D.D., M,Brighenti., Brighenti, F. (2006). Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Food & Nutrition Research, 50(11), 1030-1138.
-
[17] Zujko, M.E., Witkowska, A.M. (2011). Antioxidant potantial and polyphenol content of selected food. International Journal of Food Properties,14(2), 300-308.
-
[18] Guzel, S., Herken, E.N., Erel, Ö. (2009). Total antioxidant capacity and total phenol contents of Turkish edible oils. Akademik Gıda, 7(6),13-17.
-
[19] Halvorsen, B.L., Carlsen, M.H., Phillips, K.M., Bohn, S.K., Holte, K., Jacobs, D.R., Blomhoff, R. (2006). Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. The American Journal of Clinical Nutrition, 84(1), 95-135.
-
[20] Wang, H., Cao, G., Prior, R.L. (1996). Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry, 44(3), 701-705.
-
[21] Wu, X., Beecher, G.R., Holden, M., Haytowitz, D.B., Gebhardt, S.E., Prior, R.L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural and Food Chemistry, 52(12), 4026-4037.
-
[22] McKhann, G., Knopman, D.S., Chertkow, H., Hyman, B.T., JackJr, C.R., Kawas, C.H., Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., Mohs, R., Morris, J.C., Rossor, M.N., Scheltens, P.,Carrillo, M.C.,Thies,B.,Weintraub, S., Phelps,C.H. (2011). The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia Journal, 7(3), 263-269.
-
[23] Morris, J.C. (1997). Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9(1), 173-176.
-
[24] Eren, Y., Dirik, E., Neşelioğlu, S., Erel,Ö. (2015) .Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study. Acta Neurologica Belgica, 115(4), 643-649.
-
[25] Carrión-García, C.J., Guerra-Hernández, E.J., García-Villanova, B., Serafini, M., Sánchez, M.J., Amiano, P., Montes, M.M. (2020) .Plasma non-enzymatic antioxidant capacity (NEAC) in relation to dietary NEAC, nutrient antioxidants and inflammation-related biomarkers. Antioxidants, 9(4), 301.
-
[26] Hollis, J.H., Houchins, J.A., Blumberg, J.B., Mattes, R.D. (2009). Effects of concord grape juice on appetite, diet, body weight, lipid profile, and antioxidant status of adults. Journal of the American Nutrition Association, 28(5), 574-581.
-
[27] Rowe, C.A., Nantz, M.P., Nieves,C., West,R.L., Percival, S.S. (2011). Regular consumption of concord grape juice benefits human immunity. Journal of Medicinal Food, 14(1-2), 69-78.
-
[28] Castilla, P., Echarri, R., Dávalos, A., Cerrato, F., Ortega, H., Teruel, J.L., Lucas, M.F., Coronado, D.G., Ortuna, J., Lasuncion, M.A. (2006). Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. The American Journal of Clinical Nutrition, 84(1), 252-262.
-
[29] O'Byrne, D.J., Devaraj, S., Grundy, S.M., Jialal, I. (2002). Comparison of the antioxidant effects of Concord grape juice flavonoids alpha-tocopherol on markers of oxidative stress in healthy adults. The American Journal of Clinical Nutrition, 76(6), 1367-1374.
-
[30] Zhang, L., Zuo, Z., Lin, G. (2007). Intestinal and hepatic glucuronidation of flavonoids. Molecular Pharmaceutics, 4(6), 833-845.
-
[31] Vollmannová, A., Tóth, T., Urminská, D., Poláková, Z., Timoracká, M., Margitanová, E. (2009). Anthocyanins content in blueberries (Vaccinium corymbosum L.) in relation to freesing duration. Czech Journal of Food Sciences, 27(1), 204-206.
-
[32] Benn, T., Kim, B., Park, Y. K., Wegner, C. J., Harness, E., Nam, T.G. ,Kim, D.O., Lee, J.S., Lee, J.Y. (2014). Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice. Journal of Nutritional Biochemistry, 25(10), 1019-1025.
-
[33] Wu, T., Yin, J., Zhang, G., Long, H., Zheng, X. (2016). Mulberry and cherry anthocyanin consumption prevents oxidative stress and inflammation in diet-induced obese mice. Molecular Nutrition & Food Research, 60(3), 687-694.
-
[34] Wei, J., Zhang, G., Zhang, X., Xu, D., Gao, J., Fan, J., Zou, Z. (2017). Anthocyanins from black chokeberry (Aroniamelanocarpa elliot) delayed aging-related degenerative changes of brain. Journal of Agricultural and Food Chemistry, 65(29), 5973-5984.
-
[35] Feng, R.Z., Wang, Q., Tong, W.Z., Xiong, J., Wei, Q., Zhou, W.H., Yin, Z.Q., Chen, Y.Q., Song, X., Li, L.X. (2015). Extraction and antioxidant activity of flavonoids of Morus nigra. International Journal of Clinical and Experimental Medicine, 8(12), 22328-22336.
-
[36] Mierziak, J., Kostyn, K., Boba, A., Czemplik, M., Kulma, A., Wojtasik, W. (2021). Influence of the bioactive diet components on the gene expression regulation. Nutrients, 13(11), 3673.
-
[37] Karlsen, A., Retterstøl, L., Laake, P., Paur, I., Bøhn, S.K., Sandvik, L., Blomhoff, R. (2007). Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. Journal of Nutrition, 137(8), 1951-1954.
-
[38] Youn, B.S., Klöting, N., Kratzsch, J., Lee, N., Park, J.W., Song, E.S., Ruschke, K., Oberbach, A., Fasshauer, M., Stumvoll, W., Blüher, M. (2008). Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes, 57(2), 372-377.
-
[39] Amaral, C.A., Amaral, T.L.M., Monteiro, G.T.R., Vasconcellos, M.T.L., Portela, M.C. (2019). Hand grip strength: Reference values for adults and elderly people of Rio Branco, Acre, Brazil. PLoS One, 14(1), 1-13.
-
[40] Velázquez Alva, M.C., Irigoyen Camacho, M.E., Delgadillo Velázquez, J., Lazarevich, I. (2013). The relationship between sarcopenia,undernutrition, physical mobility and basic activities of daily living in a group of elderly women of Mexico City. Nutricion Hospitalaria, 28(2), 514-521.
-
[41] World Health Organization. (2023). Dementia fact sheet. Retrieved from https://www.who.int/news-room/fact-sheets/detail/dementia.
-
[42] Alzheimer’s Association. (2024). 2024 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 20(4), 1170–1294.
-
[43] Khoo, H.E., Azlan, A., Tang, S.T., Lim, S.M. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54(11), 4069–4075.
-
[44] Peng, C.H., Chyau, C.C., Wang, C.J., Huang, C. N. (2016). The effect of mulberry fruits consumption on lipid profiles in hypercholesterolemic subjects: A randomized controlled trial. Journal of Food and Drug Analysis, 24(4), 750–757.
-
[45] Wang, Y., Zhao, L., Wang, D., Yang, S. (2018). Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: A mini-review. Food Science and Human Wellness, 7(2), 102–106.
-
[46] Borda, M.G., Ramírez-Vélez, R., Botero-Rodriguez, F., Patricio-Baldera, J., de Lucia, C., Pola, I., Barreto, G.E., Khalifa, K., Bergland, A.K., Kivipelto, M., Cederholm, T., Zetterberg, H., Ashton, N.J., Ballard, C., Siow, R., Aarsland, D., Finger, N.J. (2025). Anthocyanin supplementation in adults at risk for dementia: A randomized controlled trial on its cardiometabolic and anti-inflammatory biomarker effects. GeroScience, in press, doi: 10.1007/s11357-025-01669-8.
Hafif-Orta Derecede Alzheimer Demanslı Hastalarda Karadut (Morus nigra) Tüketiminin Antioksidan Kapasite ve İnflamasyon Üzerine Etkisi: Randomize Klinik Pilot Çalışma
Year 2025,
Volume: 23 Issue: 3, 173 - 183, 30.09.2025
Yeliz Güçer
,
Mehmet İlkin Naharci
,
Neslişah Rakıcıoğlu
,
Zeynep Göktaş
Abstract
Bu çalışmanın amacı Azheimer demansı olan hastalarda; karadut (Morus nigra) konsantresinin antioksidan kapasiteye ve inflamasyona etkisini incelemektir. Araştırma hafif-orta evre Alzheimer demansı olan 44 birey üzerinde yürütülmüştür. Müdahale grubuna 12 hafta boyunca günde 20 g karadut konsantresi verilmiştir. Çalışma 20 kişilik müdahale grubu, 19 kişilik kontrol grubu ile tamamlanmıştır. Araştırmanın başında ve sonunda antioksidan kapasitenin değerlendirilmesi için Süperoksit dismutaz (SOD) enzimi, Total Oksidan seviyesi (TOS), Total Antioksidan Seviyesi (TAS) ve oksidatif stres indeksi düzeylerine bakılmıştır. İnflamasyonu değerlendirmek için serumda İnterlökin 1-Beta (IL-1 beta) ve Transforme Edici Büyüme Faktör Beta (TGF-beta) seviyelerine bakılmıştır. Ayrıca hastalardan 3 günlük besin tüketim kayıtları alınarak; Oksijen radikali absorbans kapasitesi (ORAC), Trolox® eşdeğeri antioksidan kapasite (TEAC), Total radikal yakalama antioksidan kapasitesi (TRAP), Demir iyonu indirgeyici antioksidan güç (FRAP), Toplam Fenolik (TP) değerleri temel alınarak diyetin toplam antioksidan kapasitesi (dTAC) hesaplanmıştır. SOD, TGF-beta, TAS, IL-1 beta düzeylerinde anlamlı bir değişiklik olmamıştır. Ancak sadece kontrol grubunda TOS ve oksidatif stres indeksi düzeylerinde istatistiksel olarak anlamlı artış tespit edilmiştir (p<0,05). Diyet T-ORAC, H-ORAC, TEAC, TRAP, FRAP-2, FRAP-3 ve dTAC düzeylerinde müdahale grubunda anlamlı artış görülmüştür (p<0,05). Ancak, serum inflamasyon belirteçleri ile diyet antioksidanları veya toplam diyet antioksidan kapasitesi (dTAC) arasında anlamlı bir ilişki bulunmamıştır (p>0,05). Sonuç olarak karadutun hafif-orta şiddette Alzheimer demansı olan yaşlılarda antioksidan kapasite ve inflamasyon üzerinde sınırlı etkiye sahip olduğu bulunmuştur.
Ethical Statement
Bu çalışma, Ankara Numune Eğitim ve Araştırma Hastanesi etik kurulu tarafından onaylanmıştır (tarih: 02.07.2018 ve sayı: 18-2325) ve 1964 Helsinki Deklarasyonu ve sonraki değişikliklerinde belirtilen etik standartlara uygun olarak gerçekleştirilmiştir. Sağlık Bakanlığı'ndan ayrıca izinler alınmış ve klinik çalışma kaydı yapılmıştır (Sayı: 66175679-514.11.01-E.33211 Klinik Araştırma 8-AKD-167, tarih: 10.04.2019), (Sayı: 50687469-799, tarih: 20.06.2019). Çalışmaya katılan tüm bireylerden yazılı bilgilendirilmiş onam alınmıştır.
References
-
[1] Chen, S., Zhou, H., Zhang, G., Meng, J., Deng, K., Zhou, W., Wang, H.,Wang, Z., Hu, N., Suo, Y. (2019). Anthocyanins from Lycium ruthenicum Murr. ameliorated d-galactose-induced memory impairment, oxidative stress, and neuroinflammation in adult rats. Journal of Agricultural and Food Chemistry, 67(11), 3140–3149.
-
[2] Jomova, K., Vondrakova, D., Lawson, M., Valko, M. (2010). Metals, oxidative stress and neurodegenerative disorders. Molecular and Cellular Biochemistry, 345(1-2),91-104.
-
[3] Afzal, M., Redha, A., AlHasan, R. (2019). Anthocyanins potentially contribute to defense against Alzheimer's disease. Molecules, 24(23), 4255.
-
[4] Ebrahimi, A., Schluesener, H. (2012). Natural Phenols against neurodegenerative disorders: potentials and pitfalls. Ageing Research Reviews, 11(2), 329-345.
-
[5] Zhang, J., Wu, J., Liu, F., Tong, L., Chen,Z.,Chen, J., He, H., Xu, R., Ma,Y., Huang, C. (2019). Neuroprotective effects of anthocyanins and its major component cyanidin-3-O-glucoside (C3G) in the central nervous system: An outlined review. European Journal of Pharmacology, 858, 172500.
-
[6] Ullah, R., Khan, M., Shah, S.A., Kamran, S., Myeong, O.K. (2019). A hidden therapeutic candidate in metabolic disorders with major focus in neurodegeneration. Nutrients, 11(6), 1195.
-
[7] Winter, A.N., Bickford, P.C. (2019). Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease. Antioxidants (Basel), 8(9), 333.
-
[8] Ma, H., Johnson, S.L., Liu, W.,Dasilva, N.A., MeschwitzS., Dain, J.A., Seeram, N.P. (2018). Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, Blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti-β-amyloid aggregation, and microglial neuroprotective effects. International Journal of Molecular Sciences,19(2), 461.
-
[9] Khan, M.S., Ali, T., Kim, M.W., Jo, M.H., Chung, J., Kim,M.O. (2019). Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Molecular Neurobiology, 56(1), 671-687.
-
[10] Pacheco, S.M., Azambuja, J.H., Carvalho,T.H.,Soares, M.S.P., Oliveira, P.S., Silveira, E.F., Stefanello, F.M., Braganhol, E., Gutierres, J.M., Spanevello, R.M. (2018). Glioprotective effects of lingonberry extract against altered cellular viability, acetylcholinesterase activity, and oxidative stress in lipopolysaccharide-treated astrocytes. Cellular and Molecular Neurobiology, 38(5), 1107-1121.
-
[11] Cásedas, G., Bennet, A.C., Burgos, E.G., Serranillos, M.P., Lopez, V., Smith, C. (2019). Polyphenol-associated oxidative stress and inflammation in a model of LPS-induced inflammation in glial cells: do we know enough for responsible compounding? Inflammopharmacology, 27(1), 189-197.
-
[12] Lim, S.H., Choi, C. (2019). Pharmacological properties of Morus nigra L. (Black Mulberry) as a promising nutraceutical resource. Nutrients, 11(2), 437.
-
[13] Carlsen, M.H., Halvorsen, B.L., Holte, K., Bohn, S.K., Dragland, S., Sampson, L., Willey, C., Senoo, H., Umezono, Y., Sanada, C., Barikmo, I., Berhe, N., Willet, W.C., Philips, K.M., Jacops, D.R., Blomhoff, R. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutritional Journal, 9(3), 2-11.
-
[14] Halvorsen, B.L., Carlsen, M.H., Philips, K.M., Bohn, S.K., Holte, K., Jacops, D., Blomhoff, R. (2006). Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. The American Journal of Clinical Nutrition, 84(1), 95-135.
-
[15] Pellegrini, N., Serafini, M., Colombi, B., Rio,D., Salvatore, S., Bianchi, M., Brighenti, F. (2003). Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. Journal of Nutrition, 133(9), 2812-2819.
-
[16] Pellegrini, N., Serafini,M., Salvatore, S., Rio, D.D., M,Brighenti., Brighenti, F. (2006). Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Food & Nutrition Research, 50(11), 1030-1138.
-
[17] Zujko, M.E., Witkowska, A.M. (2011). Antioxidant potantial and polyphenol content of selected food. International Journal of Food Properties,14(2), 300-308.
-
[18] Guzel, S., Herken, E.N., Erel, Ö. (2009). Total antioxidant capacity and total phenol contents of Turkish edible oils. Akademik Gıda, 7(6),13-17.
-
[19] Halvorsen, B.L., Carlsen, M.H., Phillips, K.M., Bohn, S.K., Holte, K., Jacobs, D.R., Blomhoff, R. (2006). Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. The American Journal of Clinical Nutrition, 84(1), 95-135.
-
[20] Wang, H., Cao, G., Prior, R.L. (1996). Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry, 44(3), 701-705.
-
[21] Wu, X., Beecher, G.R., Holden, M., Haytowitz, D.B., Gebhardt, S.E., Prior, R.L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural and Food Chemistry, 52(12), 4026-4037.
-
[22] McKhann, G., Knopman, D.S., Chertkow, H., Hyman, B.T., JackJr, C.R., Kawas, C.H., Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., Mohs, R., Morris, J.C., Rossor, M.N., Scheltens, P.,Carrillo, M.C.,Thies,B.,Weintraub, S., Phelps,C.H. (2011). The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia Journal, 7(3), 263-269.
-
[23] Morris, J.C. (1997). Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9(1), 173-176.
-
[24] Eren, Y., Dirik, E., Neşelioğlu, S., Erel,Ö. (2015) .Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study. Acta Neurologica Belgica, 115(4), 643-649.
-
[25] Carrión-García, C.J., Guerra-Hernández, E.J., García-Villanova, B., Serafini, M., Sánchez, M.J., Amiano, P., Montes, M.M. (2020) .Plasma non-enzymatic antioxidant capacity (NEAC) in relation to dietary NEAC, nutrient antioxidants and inflammation-related biomarkers. Antioxidants, 9(4), 301.
-
[26] Hollis, J.H., Houchins, J.A., Blumberg, J.B., Mattes, R.D. (2009). Effects of concord grape juice on appetite, diet, body weight, lipid profile, and antioxidant status of adults. Journal of the American Nutrition Association, 28(5), 574-581.
-
[27] Rowe, C.A., Nantz, M.P., Nieves,C., West,R.L., Percival, S.S. (2011). Regular consumption of concord grape juice benefits human immunity. Journal of Medicinal Food, 14(1-2), 69-78.
-
[28] Castilla, P., Echarri, R., Dávalos, A., Cerrato, F., Ortega, H., Teruel, J.L., Lucas, M.F., Coronado, D.G., Ortuna, J., Lasuncion, M.A. (2006). Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. The American Journal of Clinical Nutrition, 84(1), 252-262.
-
[29] O'Byrne, D.J., Devaraj, S., Grundy, S.M., Jialal, I. (2002). Comparison of the antioxidant effects of Concord grape juice flavonoids alpha-tocopherol on markers of oxidative stress in healthy adults. The American Journal of Clinical Nutrition, 76(6), 1367-1374.
-
[30] Zhang, L., Zuo, Z., Lin, G. (2007). Intestinal and hepatic glucuronidation of flavonoids. Molecular Pharmaceutics, 4(6), 833-845.
-
[31] Vollmannová, A., Tóth, T., Urminská, D., Poláková, Z., Timoracká, M., Margitanová, E. (2009). Anthocyanins content in blueberries (Vaccinium corymbosum L.) in relation to freesing duration. Czech Journal of Food Sciences, 27(1), 204-206.
-
[32] Benn, T., Kim, B., Park, Y. K., Wegner, C. J., Harness, E., Nam, T.G. ,Kim, D.O., Lee, J.S., Lee, J.Y. (2014). Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice. Journal of Nutritional Biochemistry, 25(10), 1019-1025.
-
[33] Wu, T., Yin, J., Zhang, G., Long, H., Zheng, X. (2016). Mulberry and cherry anthocyanin consumption prevents oxidative stress and inflammation in diet-induced obese mice. Molecular Nutrition & Food Research, 60(3), 687-694.
-
[34] Wei, J., Zhang, G., Zhang, X., Xu, D., Gao, J., Fan, J., Zou, Z. (2017). Anthocyanins from black chokeberry (Aroniamelanocarpa elliot) delayed aging-related degenerative changes of brain. Journal of Agricultural and Food Chemistry, 65(29), 5973-5984.
-
[35] Feng, R.Z., Wang, Q., Tong, W.Z., Xiong, J., Wei, Q., Zhou, W.H., Yin, Z.Q., Chen, Y.Q., Song, X., Li, L.X. (2015). Extraction and antioxidant activity of flavonoids of Morus nigra. International Journal of Clinical and Experimental Medicine, 8(12), 22328-22336.
-
[36] Mierziak, J., Kostyn, K., Boba, A., Czemplik, M., Kulma, A., Wojtasik, W. (2021). Influence of the bioactive diet components on the gene expression regulation. Nutrients, 13(11), 3673.
-
[37] Karlsen, A., Retterstøl, L., Laake, P., Paur, I., Bøhn, S.K., Sandvik, L., Blomhoff, R. (2007). Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. Journal of Nutrition, 137(8), 1951-1954.
-
[38] Youn, B.S., Klöting, N., Kratzsch, J., Lee, N., Park, J.W., Song, E.S., Ruschke, K., Oberbach, A., Fasshauer, M., Stumvoll, W., Blüher, M. (2008). Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes, 57(2), 372-377.
-
[39] Amaral, C.A., Amaral, T.L.M., Monteiro, G.T.R., Vasconcellos, M.T.L., Portela, M.C. (2019). Hand grip strength: Reference values for adults and elderly people of Rio Branco, Acre, Brazil. PLoS One, 14(1), 1-13.
-
[40] Velázquez Alva, M.C., Irigoyen Camacho, M.E., Delgadillo Velázquez, J., Lazarevich, I. (2013). The relationship between sarcopenia,undernutrition, physical mobility and basic activities of daily living in a group of elderly women of Mexico City. Nutricion Hospitalaria, 28(2), 514-521.
-
[41] World Health Organization. (2023). Dementia fact sheet. Retrieved from https://www.who.int/news-room/fact-sheets/detail/dementia.
-
[42] Alzheimer’s Association. (2024). 2024 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 20(4), 1170–1294.
-
[43] Khoo, H.E., Azlan, A., Tang, S.T., Lim, S.M. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54(11), 4069–4075.
-
[44] Peng, C.H., Chyau, C.C., Wang, C.J., Huang, C. N. (2016). The effect of mulberry fruits consumption on lipid profiles in hypercholesterolemic subjects: A randomized controlled trial. Journal of Food and Drug Analysis, 24(4), 750–757.
-
[45] Wang, Y., Zhao, L., Wang, D., Yang, S. (2018). Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: A mini-review. Food Science and Human Wellness, 7(2), 102–106.
-
[46] Borda, M.G., Ramírez-Vélez, R., Botero-Rodriguez, F., Patricio-Baldera, J., de Lucia, C., Pola, I., Barreto, G.E., Khalifa, K., Bergland, A.K., Kivipelto, M., Cederholm, T., Zetterberg, H., Ashton, N.J., Ballard, C., Siow, R., Aarsland, D., Finger, N.J. (2025). Anthocyanin supplementation in adults at risk for dementia: A randomized controlled trial on its cardiometabolic and anti-inflammatory biomarker effects. GeroScience, in press, doi: 10.1007/s11357-025-01669-8.