Research Article
BibTex RIS Cite

Determination of Caffeine Contents in Soft Drinks by High Performance Liquid Chromatography (HPLC) Method

Year 2025, Volume: 23 Issue: 3, 203 - 209, 30.09.2025
https://doi.org/10.24323/akademik-gida.1792609

Abstract

Soft drinks have evolved from traditional herbal tinctures into scientifically formulated beverages designed to enhance physical and mental performance. In this study, caffeine, the primary active ingredient in soft drinks, was analyzed using the HPLC-UV method across 15 different commercial products in Türkiye. The caffeine content of most soft drinks was below the legal limit of 150 µg/mL, and caffeine was not detected in some products, and a single drink contained caffeine slightly above the legal limit. For example, Brands 1, 4 and 7 had the caffeine contents of 131.72, 154.38 and 714.64 µg/mL, respectively. The ability of caffeine to block adenosine receptors and enhance intracellular cAMP levels boosts its performance-enhancing effects, including improved endurance, increased alertness, and accelerated fat metabolism. However, risks associated with high-dose consumption, such as elevated blood pressure and reduced ergogenic benefits at doses above 9 mg/kg, require the need for moderated use. This study aims to determine the caffeine content of a variety of energy drinks sold in Turkey and compare these levels against legal thresholds. In addition, it presents validation data for the HPLC method to confirm analytical reliability.

References

  • [1] Hara, K.Y., Kondo, A. (2015). ATP regulation in bioproduction. Microbial Cell Factories 14(1), 198.
  • [2] Zhu, X.H., Lee, B.Y., Chen, W. (2018). Functional energetic responses and individual variance of the human brain revealed by quantitative imaging of adenosine triphosphate production rates. Journal of Cerebral Blood Flow and Metabolism, 38(6), 959–972.
  • [3] Peacock, A., Martin, F.H., Carr, A. (2013). Energy drink ingredients. Contribution of caffeine and taurine to performance outcomes. Appetite, 64, 1-4.
  • [4] Ivy, J.L., Kammer, L., Ding, Z., Wang, B., Bernard, J.R., Liao, Y.-H., Hwang, J. (2009). Improved cycling time-trial performance after ingestion of a caffeine energy drink. International Journal of Sport Nutrition and Exercise Metabolism,19, 61-78.
  • [5] Seifert, S.M., Schaechter, J.L., Hershorin, E.R., Lipshultz, S.E. (2011). Health effects of energy drinks on children, adolescents, and young adults. Pediatrics, 127(3), 511-528.
  • [6] Erdmann, J., Wiciński, M., Wódkiewicz, E., Nowaczewska, M., Słupski, M., Otto, S. W., Kubiak, K., Huk-Wieliczuk, E., Malinowski, B. (2021). Effects of energy drink consumption on physical performance and potential danger of inordinate usage. Nutrients, 13(8), 2506.
  • [7] Abu-Hashem, A.A., Hakami, O., El-Shazly, M., El-Nashar, H.A.S., Yousif, M.N.M. (2024). Caffeine and purine derivatives: a comprehensive review on the chemistry, biosynthetic pathways, synthesis-related reactions, biomedical prospectives and clinical applications. Chemistry and Biodiversity, 21(7), e202400050.
  • [8] Graham T.E. (2001). Caffeine and exercise: metabolism, endurance and performance. Sports Medicine, 31(11), 785–807.
  • [9] Hodgson, A.B., Randell, R.K., Jeukendrup, A.E. (2013). The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS ONE, 8(4), e59561.
  • [10] Southward, K., Rutherfurd-Markwick, K.J., Ali, A. (2018). The effect of acute caffeine ingestion on endurance performance: a systematic review and meta-analysis. Sports Medicine 48(8), 1913-1928.
  • [11] Ashihara, H., Sano, H., Crozier, A. (2008). Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry, 69(4), 841-856.
  • [12] Feroci, M., Bortolami, M., Chiarotto, I., Di Matteo, P., Mattiello, L., Pandolfi, F., Rocco, D., Petrucci, R. (2020). An insight into the reactivity of the electrogenerated radical cation of caffeine. Electrochem, 1(1), 44-55.
  • [13] Gunasekaran, S., Sankari, G., Ponnusamy, S. (2005). Vibrational spectral investigation on xanthine and its derivatives - Theophylline, caffeine and theobromine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 61(1–2), 117–127.
  • [14] Burke, B.I., Travis, S.K., Gentles, J.A., Sato, K., Lang, H.M., Bazyler, C.D. (2021). The effects of caffeine on jumping performance and maximal strength in female collegiate athletes. Nutrients, 13(8), 24-96.
  • [15] Santos-Mariano, A.C., Cristina-Souza, G., Santos, P.S., Domingos, P.R., De-Oliveira, P., Bertuzzi, R., Rodacki, C., Lima-Silva, A.E. (2022). Caffeine intake increases countermovement jump performance in well-trained high jumpers. PharmaNutrition, 21, 100305.
  • [16] Acheson, K.J., Gremaud, G., Meirim, I., Montigon, F., Krebs, Y., Fay, L.B., Gay, L.J., Schneiter, P., Schindler, C., Tappy, L. (2004). Metabolic effects of caffeine in humans: lipid oxidation or futile cycling. The American Journal of Clinical Nutrition, 79(1), 40–46.
  • [17] Grgic, J., Trexler, E.T., Lazinica, B., Pedisic, Z. (2018). Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. Journal of the International Society of Sports Nutrition, 15(1), 11.
  • [18] Doherty, M., Smith, P.M. (2005). Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scandinavian Journal of Medicine and Science in Sports, 15(2), 69–78.
  • [19] Alonso, M.R., Fernández-García, B. (2020). Evolution of the use of sports supplements. PharmaNutrition, 14, 100239.
  • [20] Hartley, T.R., Sung, B.H., Pincomb, G.A., Whitsett, T.L., Wilson, M.F., Lovallo, W.R. (2000). Hypertension risk status and effect of caffeine on blood pressure. Hypertension, 36(1), 137-141.
  • [21] Riksen, N.P., Rongen, G.A., Smits, P. (2009). Acute and long-term cardiovascular effects of coffee: Implications for coronary heart disease. Pharmacology and Therapeutics, 121(2), 185-191.
  • [22] İşçioğlu, F., Ova, G., Duyar, Y., Köksal, M. (2010). Survey on energy drink consumption and awareness among university students. Academic Food Journal, 8(5), 6-11.
  • [23] Xi Jun, (2009). Caffeine extraction from green tea leaves assisted by high pressure processing. Journal of Food Engineering, 94(1), 105-109.
  • [24] Eurachem Guide, (2014). The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics. B. Magnusson, U, Örnemark (Editors), 2nd Edition, ISBN 978-91-87461-59-0, Available from www.eurochem.org.
  • [25] Bayraç, C., Camızcı, G. (2020). Single laboratory validation of HPLC method for patulin determination. Nigde Omer Halisdemir University Journal of Engineering Sciences, 9(1), 285-296.
  • [26] Gliszczyńska-Świgło, A., Rybicka, I. (2015). Simultaneous determination of caffeine and water-soluble vitamins in energy drinks by hplc with photodiode array and fluorescence detection. Food Analytical Methods, 8(1), 139–146.
  • [27] Rai, K.P., Rai, H.B., Dahal, S., Chaudhary, S., Shrestha, S. (2016). Determination of caffeine and taurine contents in energy drinks by HPLC-UV. Journal of Food Science and Technology Nepal, 9, 66–73.
  • [28] Michael, W.K., David, N.M., Bright, S. A., John, A.A., Gloria, O. (2018). Quantitative estimation of the caffeine content in some energy drinks on the ghanaian market. International Journal of Nutrition and Metabolism, 10(3), 16–22.
  • [29] Breda, J.J., Whiting, S.H., Encarnação, R., Norberg, S., Jones, R., Reinap, M., Jewell, J. (2014). Energy drink consumption in europe: a review of the risks, adverse health effects, and policy options to respond. Frontiers in Public Health, 2, 134.
  • [30] Rocha, P.L. de A., Lima, A.L.C., Saunders, B., Reis, C.E.G. (2022). Development of a caffeine content table for foods, drinks, medications and supplements typically consumed by the brazilian population. Nutrients, 14(20), 4417.

Yüksek Performanslı Sıvı Kromatografi (HPLC) Yöntemi ile Meşrubatlarda Kafein İçeriğinin Belirlenmesi

Year 2025, Volume: 23 Issue: 3, 203 - 209, 30.09.2025
https://doi.org/10.24323/akademik-gida.1792609

Abstract

Gazlı içecekler (meşrubatlar), geleneksel bitkisel tentürlerden fiziksel ve zihinsel performansı artırmak için tasarlanmış bilimsel olarak formüle edilmiş içeceklere dönüşmüştür. Bu çalışmada, gazlı içeceklerin birincil aktif bileşeni olan kafein, Türkiye’deki 15 farklı ticari ürün üzerinden HPLC-UV yöntemiyle analiz edilmiştir. Çoğu gazlı içeceğin kafein içeriği, yasal sınır olan 150 µg/mL’nin altında bulunmuş, bazı ürünlerde ise kafein tespit edilmemiştir ve tek bir içecekte kafein seviyesi yasal sınırın biraz üzerinde çıkmıştır. Örneğin, 1., 4. ve 7. markaların kafein içerikleri sırasıyla 131,72, 154,38 ve 714,64 µg/mL olarak belirlenmiştir. Kafeinin adenozin reseptörlerini bloke etme ve hücre içi cAMP seviyelerini artırma yeteneği, dayanıklılığın artması, uyanıklığın artması ve yağ metabolizmasının hızlanması gibi performans artırıcı etkilerinin temelini oluşturmaktadır. Ancak, 9 mg/kg’ın üzerindeki dozlarda kan basıncının yükselmesi ve ergojenik faydaların azalması gibi yüksek doz tüketimiyle ilişkili riskler, ölçülü kullanım ihtiyacını gerektirmektedir. Bu çalışma, Türkiye’de satılan çeşitli gazlı içeceklerin kafein içeriğini belirlemeyi ve bu seviyeleri yasal sınırlarla karşılaştırmayı amaçlamaktadır. Ayrıca, analitik güvenilirliği doğrulamak için HPLC yöntemiyle ilgili doğrulama verilerini sunmaktadır.

References

  • [1] Hara, K.Y., Kondo, A. (2015). ATP regulation in bioproduction. Microbial Cell Factories 14(1), 198.
  • [2] Zhu, X.H., Lee, B.Y., Chen, W. (2018). Functional energetic responses and individual variance of the human brain revealed by quantitative imaging of adenosine triphosphate production rates. Journal of Cerebral Blood Flow and Metabolism, 38(6), 959–972.
  • [3] Peacock, A., Martin, F.H., Carr, A. (2013). Energy drink ingredients. Contribution of caffeine and taurine to performance outcomes. Appetite, 64, 1-4.
  • [4] Ivy, J.L., Kammer, L., Ding, Z., Wang, B., Bernard, J.R., Liao, Y.-H., Hwang, J. (2009). Improved cycling time-trial performance after ingestion of a caffeine energy drink. International Journal of Sport Nutrition and Exercise Metabolism,19, 61-78.
  • [5] Seifert, S.M., Schaechter, J.L., Hershorin, E.R., Lipshultz, S.E. (2011). Health effects of energy drinks on children, adolescents, and young adults. Pediatrics, 127(3), 511-528.
  • [6] Erdmann, J., Wiciński, M., Wódkiewicz, E., Nowaczewska, M., Słupski, M., Otto, S. W., Kubiak, K., Huk-Wieliczuk, E., Malinowski, B. (2021). Effects of energy drink consumption on physical performance and potential danger of inordinate usage. Nutrients, 13(8), 2506.
  • [7] Abu-Hashem, A.A., Hakami, O., El-Shazly, M., El-Nashar, H.A.S., Yousif, M.N.M. (2024). Caffeine and purine derivatives: a comprehensive review on the chemistry, biosynthetic pathways, synthesis-related reactions, biomedical prospectives and clinical applications. Chemistry and Biodiversity, 21(7), e202400050.
  • [8] Graham T.E. (2001). Caffeine and exercise: metabolism, endurance and performance. Sports Medicine, 31(11), 785–807.
  • [9] Hodgson, A.B., Randell, R.K., Jeukendrup, A.E. (2013). The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS ONE, 8(4), e59561.
  • [10] Southward, K., Rutherfurd-Markwick, K.J., Ali, A. (2018). The effect of acute caffeine ingestion on endurance performance: a systematic review and meta-analysis. Sports Medicine 48(8), 1913-1928.
  • [11] Ashihara, H., Sano, H., Crozier, A. (2008). Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry, 69(4), 841-856.
  • [12] Feroci, M., Bortolami, M., Chiarotto, I., Di Matteo, P., Mattiello, L., Pandolfi, F., Rocco, D., Petrucci, R. (2020). An insight into the reactivity of the electrogenerated radical cation of caffeine. Electrochem, 1(1), 44-55.
  • [13] Gunasekaran, S., Sankari, G., Ponnusamy, S. (2005). Vibrational spectral investigation on xanthine and its derivatives - Theophylline, caffeine and theobromine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 61(1–2), 117–127.
  • [14] Burke, B.I., Travis, S.K., Gentles, J.A., Sato, K., Lang, H.M., Bazyler, C.D. (2021). The effects of caffeine on jumping performance and maximal strength in female collegiate athletes. Nutrients, 13(8), 24-96.
  • [15] Santos-Mariano, A.C., Cristina-Souza, G., Santos, P.S., Domingos, P.R., De-Oliveira, P., Bertuzzi, R., Rodacki, C., Lima-Silva, A.E. (2022). Caffeine intake increases countermovement jump performance in well-trained high jumpers. PharmaNutrition, 21, 100305.
  • [16] Acheson, K.J., Gremaud, G., Meirim, I., Montigon, F., Krebs, Y., Fay, L.B., Gay, L.J., Schneiter, P., Schindler, C., Tappy, L. (2004). Metabolic effects of caffeine in humans: lipid oxidation or futile cycling. The American Journal of Clinical Nutrition, 79(1), 40–46.
  • [17] Grgic, J., Trexler, E.T., Lazinica, B., Pedisic, Z. (2018). Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. Journal of the International Society of Sports Nutrition, 15(1), 11.
  • [18] Doherty, M., Smith, P.M. (2005). Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scandinavian Journal of Medicine and Science in Sports, 15(2), 69–78.
  • [19] Alonso, M.R., Fernández-García, B. (2020). Evolution of the use of sports supplements. PharmaNutrition, 14, 100239.
  • [20] Hartley, T.R., Sung, B.H., Pincomb, G.A., Whitsett, T.L., Wilson, M.F., Lovallo, W.R. (2000). Hypertension risk status and effect of caffeine on blood pressure. Hypertension, 36(1), 137-141.
  • [21] Riksen, N.P., Rongen, G.A., Smits, P. (2009). Acute and long-term cardiovascular effects of coffee: Implications for coronary heart disease. Pharmacology and Therapeutics, 121(2), 185-191.
  • [22] İşçioğlu, F., Ova, G., Duyar, Y., Köksal, M. (2010). Survey on energy drink consumption and awareness among university students. Academic Food Journal, 8(5), 6-11.
  • [23] Xi Jun, (2009). Caffeine extraction from green tea leaves assisted by high pressure processing. Journal of Food Engineering, 94(1), 105-109.
  • [24] Eurachem Guide, (2014). The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics. B. Magnusson, U, Örnemark (Editors), 2nd Edition, ISBN 978-91-87461-59-0, Available from www.eurochem.org.
  • [25] Bayraç, C., Camızcı, G. (2020). Single laboratory validation of HPLC method for patulin determination. Nigde Omer Halisdemir University Journal of Engineering Sciences, 9(1), 285-296.
  • [26] Gliszczyńska-Świgło, A., Rybicka, I. (2015). Simultaneous determination of caffeine and water-soluble vitamins in energy drinks by hplc with photodiode array and fluorescence detection. Food Analytical Methods, 8(1), 139–146.
  • [27] Rai, K.P., Rai, H.B., Dahal, S., Chaudhary, S., Shrestha, S. (2016). Determination of caffeine and taurine contents in energy drinks by HPLC-UV. Journal of Food Science and Technology Nepal, 9, 66–73.
  • [28] Michael, W.K., David, N.M., Bright, S. A., John, A.A., Gloria, O. (2018). Quantitative estimation of the caffeine content in some energy drinks on the ghanaian market. International Journal of Nutrition and Metabolism, 10(3), 16–22.
  • [29] Breda, J.J., Whiting, S.H., Encarnação, R., Norberg, S., Jones, R., Reinap, M., Jewell, J. (2014). Energy drink consumption in europe: a review of the risks, adverse health effects, and policy options to respond. Frontiers in Public Health, 2, 134.
  • [30] Rocha, P.L. de A., Lima, A.L.C., Saunders, B., Reis, C.E.G. (2022). Development of a caffeine content table for foods, drinks, medications and supplements typically consumed by the brazilian population. Nutrients, 14(20), 4417.
There are 30 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Elif Sine Düvenci 0000-0003-1177-0978

Pınar Karagül 0000-0002-2569-776X

Bora Karagül 0000-0002-0834-6183

Publication Date September 30, 2025
Submission Date May 12, 2025
Acceptance Date September 22, 2025
Published in Issue Year 2025 Volume: 23 Issue: 3

Cite

APA Düvenci, E. S., Karagül, P., & Karagül, B. (2025). Determination of Caffeine Contents in Soft Drinks by High Performance Liquid Chromatography (HPLC) Method. Akademik Gıda, 23(3), 203-209. https://doi.org/10.24323/akademik-gida.1792609
AMA Düvenci ES, Karagül P, Karagül B. Determination of Caffeine Contents in Soft Drinks by High Performance Liquid Chromatography (HPLC) Method. Akademik Gıda. September 2025;23(3):203-209. doi:10.24323/akademik-gida.1792609
Chicago Düvenci, Elif Sine, Pınar Karagül, and Bora Karagül. “Determination of Caffeine Contents in Soft Drinks by High Performance Liquid Chromatography (HPLC) Method”. Akademik Gıda 23, no. 3 (September 2025): 203-9. https://doi.org/10.24323/akademik-gida.1792609.
EndNote Düvenci ES, Karagül P, Karagül B (September 1, 2025) Determination of Caffeine Contents in Soft Drinks by High Performance Liquid Chromatography (HPLC) Method. Akademik Gıda 23 3 203–209.
IEEE E. S. Düvenci, P. Karagül, and B. Karagül, “Determination of Caffeine Contents in Soft Drinks by High Performance Liquid Chromatography (HPLC) Method”, Akademik Gıda, vol. 23, no. 3, pp. 203–209, 2025, doi: 10.24323/akademik-gida.1792609.
ISNAD Düvenci, Elif Sine et al. “Determination of Caffeine Contents in Soft Drinks by High Performance Liquid Chromatography (HPLC) Method”. Akademik Gıda 23/3 (September2025), 203-209. https://doi.org/10.24323/akademik-gida.1792609.
JAMA Düvenci ES, Karagül P, Karagül B. Determination of Caffeine Contents in Soft Drinks by High Performance Liquid Chromatography (HPLC) Method. Akademik Gıda. 2025;23:203–209.
MLA Düvenci, Elif Sine et al. “Determination of Caffeine Contents in Soft Drinks by High Performance Liquid Chromatography (HPLC) Method”. Akademik Gıda, vol. 23, no. 3, 2025, pp. 203-9, doi:10.24323/akademik-gida.1792609.
Vancouver Düvenci ES, Karagül P, Karagül B. Determination of Caffeine Contents in Soft Drinks by High Performance Liquid Chromatography (HPLC) Method. Akademik Gıda. 2025;23(3):203-9.