Research Article
BibTex RIS Cite

Electrochemical Determination of Copper in Fish Samples

Year 2025, Volume: 23 Issue: 3, 210 - 218, 30.09.2025
https://doi.org/10.24323/akademik-gida.1793607

Abstract

Toxic metal contamination, particularly by copper Cu (II), poses serious risks to environmental and human health due to its persistence, bioaccumulation, and redox-driven toxicity. This study presents a simple, cost-effective, and reliable electrochemical approach for Cu (II) detection using an unmodified screen-printed electrode (SPE). Electrochemical parameters, including supporting electrolyte type and concentration, as well as scan rate, were systematically optimized using cyclic voltammetry. Among various electrolytes tested, 0.1 M potassium chloride (KCl) provided the most stable and sensitive response. The developed method demonstrated a wide linear range (0.25-10.0 mM), excellent precision (RSD≤5.8%), and a limit of detection (LOD) of 0.080 mM. When applied to complex biological matrices, such as fish liver, the sensor achieved high recovery rates (95.10-105.85%), indicating its applicability in real samples. This study also aimed to determine the effectiveness of solid-phase extraction combined with electrochemical detection for identifying Cu (II) in fish liver samples, and to compare its sensitivity and accuracy with that of inductively coupled plasma optical emission spectrometry (ICP-OES). Results demonstrated that unmodified screen-printed electrodes (SPEs) could reliably detect Cu (II) in complex biological matrices, offering a cost-effective and practical alternative for use in environmental and biological monitoring. Compared to other advanced sensors, this method stood out for its minimalistic design, low cost, and operational simplicity, offering a promising alternative for on-site heavy metal detection in resource-limited settings.

References

  • [1] Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J. (2012). Heavy metal toxicity and the environment. Experientia Supplementum, 101, 133-164.
  • [2] Panagos, P., Lugato, E., Jones, A., Borelli, P., Scarpa, S., Orgiazzi, A., Montanarella, L. (2018). Potential sources of anthropogenic copper inputs to european agricultural soils. Sustainability, 10(7), 2380, 1-17.
  • [3] Emon, F.J., Rohani, F., Sumaiya, N., Jannat, F.T., Akter, Y., Shahjahan, M., Kari, Z.A., Tahiluddin, A.B., Goh, K.W. (2023). Bioaccumulation and bioremediation of heavy metals in fishes-A Review. Toxics, 11, 510, 1-28.
  • [4] Woody, C.A., O'Neal, S.L., (2012). Effects of copper on fish and aquatic resources. Report Prepared for The Natura Conservancy. Fisheries Research and Consulting, Anchorage, Alaska. 27 pages (Available:https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/alaska/sw/cpa/Documents/W2013ECopperF062012.pdf).
  • [5] Knittel, M. (1981). Susceptibility of steelhead trout Salmo gairdneri Richardson to redmouth infection Yersinia ruckeri following exposure to copper. Journal of Fish Diseases, 4(1), 33-40.
  • [6] Rougier, F., Troutaud, D., Ndoye, A., Deschaux, P. (1994). Non-specific immune response of Zebrafish, Brachydanio rerio (Hamilton-Buchanan) following copper and zinc exposure. Fish & Shellfish Immunology, 4(2), 115-127.
  • [7] Craig, P.M., Wood, C.M., McClelland, G.B. (2010). Water chemistry alters gene expression and physiological end points of chronic waterborne copper exposure in zebrafish, Danio rerio. Environmental Science and Technology, 44(6), 2156-2162.
  • [8] Solomon, F. (2009). Impacts of copper on aquatic ecosystems and human health. Environment and Communities, 25(8), 25-28.
  • [9] Kaya, H., Akbulut, M. (2015). Effects of waterborne lead exposure in Mozambique tilapia: oxidative stress, osmoregulatory responses, and tissue accumulation. Journal of Aquatic Animal Health, 27(2), 77-87.
  • [10] Yancheva, V., Stoyanova, S., Velcheva, I., Georgieva, E. (2020). Fish as indicators for environmental monitoring and health risk assessment regarding aquatic contamination with pesticides. International Journal of Zoology and Animal Biology, 3(1), 1-6.
  • [11] Vallese, F.D., Stupniki, S., Trillini, M., Belen, F., Di Nezio, M.S., Juan, A., Pistonesi, M.F. (2024). Bioaccumulation study of cadmium and lead in Cyprinus carpio from the Colorado River, using automated electrochemical detection. Water, 17(1), 77.
  • [12] Tüzen, M. (2003). Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry, 80(1), 119-123.
  • [13] Tepe, Y., Türkmen, M., Türkmen, A. (2008). Assessment of heavy metals in two commercial fish species of four Turkish seas. Environmental Monitoring and Assessment, 146, 277-284.
  • [14] Türkmen, M., Türkmen, A., Tepe, Y., Ateş, A., Gökkuş, K. (2008). Determination of metal contaminations in sea foods from Marmara, Aegean and Mediterranean seas: twelve fish species. Food Chemistry, 108(2), 794-800.
  • [15] Maria das Graças, A.K., de Andrade, J.B., de Jesus, D.S., Lemos, V.A., Bandeira, M.L., dos Santos, W. N., Bezerra, M.A., Amorim, F.A.C., Souza, A.S., Ferreira, S.L.C. (2006). Separation and preconcentration procedures for the determination of lead using spectrometric techniques: A review. Talanta, 69(1), 16-24.
  • [16] Zhang, N., Peng, H., Wang, S., Hu, B. (2011). Fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb in environmental and biological samples and their determination by ICP-MS. Microchimica Acta, 175(1), 121-128.
  • [17] Bukkitgar, S.D., Shetti, N.P., Malladi, R.S., Reddy, K.R., Kalanur, S.S., Aminabhavi, T.M. (2020). Novel ruthenium doped TiO2/reduced graphene oxide hybrid as highly selective sensor for the determination of ambroxol. Journal of Molecular Liquids, 300, 112368.
  • [18] Paul, K.B., Kumar, S., Tripathy, S., Vanjari, S.R.K., Singh, V., Singh, S.G. (2016). A highly sensitive self assembled monolayer modified copper doped zinc oxide nanofiber interface for detection of Plasmodium falciparum histidine-rich protein-2: Targeted towards rapid, early diagnosis of malaria. Biosensors and Bioelectronics, 80, 39-46.
  • [19] Kahraman, D., Gürsoy, S.Ş. (2022). Amperometric Glucose Biosensor Prepared by Using Multi-Walled Carbon Nanotubes/Polythiophene Composite. Akademik Gıda, 20(4), 350-357.
  • [20] Ayanda, I.O., Ekhator, U.I., Bello, O.A. (2019). Determination of selected heavy metal and analysis of proximate composition in some fish species from Ogun River, Southwestern Nigeria. Heliyon, 5(10), e02512.
  • [21] Shaikh, A., Badrunnessa, M., Firdaws, J., Rahman, M. S., Pasha, N., Bakshi, P. (2011). A cyclic voltammetric study of the influence of supporting electrolytes on the redox behaviour of Cu(II) in aqueous medium. Journal of the Bangladesh Chemical Society, 24(2), 158-164.
  • [22] Liberato, P.A., Silva, A.F.D.S., Okumura, L.L., Diniz, J.A., Oliveira, A.F.D. (2021). Influence of ionic strength in determination of pKA by voltammetry. Química Nova, 43, 1408-1415.
  • [23] Tunc-Ata, M., Akturk, E. Z., Njjar, M., Kaya, A., Akdogan, A., Onac, C. (2025). Determination of retrorsine in thyme via molecularly imprinted electrochemical sensor: Validation and comparison with chromatographic technique. Food Chemistry, 144818.
  • [24] Njjar, M., Aktürk, E.Z., Kaya, A., Onac, C., Akdogan, A. (2025). A novel MIP electrochemical sensor based on a CuFe2O4NPs@rGO nanocomposite and its application in breast milk samples for the determination of fipronil. Analytical Methods, 17, 5508-5518.
  • [25] Nasiri-Majd, M., Taher, M.A., Fazelirad, H. (2016). Preparation and application of a simple electrochemical sensor for the determination of copper in some real and standard samples. Ionics, 22(2), 289-296.
  • [26] Maddipatla, D., Saeed, T.S., Narakathu, B.B., Obare, S.O., Atashbar, M.Z. (2020). Incorporating a novel hexaazatriphenylene derivative to a flexible screen-printed electrochemical sensor for copper ion detection in water samples. IEEE Sensors Journal, 20(21), 12582-12591.
  • [27] Hassine, C.B.A., Bourourou, M., Barhoumi, H., Jaffrezic, N. (2019). Copper (II) electrochemical sensor based on aluminon as chelating ionophore. IEEE Sensors Journal, 19(19), 8605-8611.
  • [28] A. Mohammed, Y., Abbas, A.A., El Badry Mohamed, M. (2023). Significant applications of an affordable and simply prepared portable carbon‐based potentiometric sensor for the highly selective and sensitive determination of Cu (II) ions released from food contact materials. Applied Organometallic Chemistry, 37(8), e7156.

Balık Numunelerinde Bakırın Elektrokimyasal Tayini

Year 2025, Volume: 23 Issue: 3, 210 - 218, 30.09.2025
https://doi.org/10.24323/akademik-gida.1793607

Abstract

Özellikle bakır Cu (II) kaynaklı toksik metal kontaminasyonu, kalıcılığı, biyolojik birikimi ve redoks kaynaklı toksisitesi nedeniyle çevre ve insan sağlığı için ciddi riskler oluşturmaktadır. Bu çalışma, serigrafi baskılı elektrot (SPE) kullanılarak Cu (II) tayini için basit, uygun maliyetli ve güvenilir bir elektrokimyasal yaklaşım sunmaktadır. Destek elektrolit çözeltisi türü ve konsantrasyonu ile tarama hızı da dahil olmak üzere elektrokimyasal parametreler, döngüsel voltametri kullanılarak sistematik olarak optimize edilmiştir. Deneysel çalışmalar sonucunda çeşitli destek elektrolitleri arasında 0.1 M potasyum klorür (KCl) en kararlı ve hassas yanıtı sağlamıştır. Geliştirilen yöntem geniş bir doğrusal aralık (0.25-10.0 mM), mükemmel hassasiyet (RSD≤%5.8) ve 0.080 mM'lik bir tespit sınırı (LOD) göstermiştir. Balık karaciğeri gibi karmaşık biyolojik matrislere uygulandığında ise, sensör gerçek numunelerde uygulanabilirliğini vurgulayan yüksek geri kazanım oranlarına (%95.10-105.85) ulaşmıştır. Bu çalışma ayrıca balık karaciğeri örneklerinde Cu (II)’yi tanımlamak için elektrokimyasal tespit ile birleştirilmiş katı faz ekstraksiyonunun etkinliğini değerlendirmeyi ve duyarlılığını ve doğruluğunu endüktif olarak eşleştirilmiş plazma optik emisyon spektrometrisi (ICP-OES) ile karşılaştırmayı amaçlamaktadır. Elde edilen sonuçlar, yüzeyi herhangi bir malzeme ile modifiye edilmemiş serigrafi baskılı elektrotların (SPE’ler) karmaşık biyolojik matrislerde Cu (II)’yi güvenilir bir şekilde tespit edebileceğini ve çevresel ve biyolojik izlemede kullanım için uygun maliyetli ve pratik bir alternatif sunduğunu göstermektedir. Diğer gelişmiş sensörlerle karşılaştırıldığında, bu yöntem minimalist tasarımı, düşük maliyeti ve operasyonel basitliği ile öne çıkmakta ve kaynak sınırlı ortamlarda yerinde ağır metal tespiti için umut verici bir alternatif sunmaktadır.

References

  • [1] Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J. (2012). Heavy metal toxicity and the environment. Experientia Supplementum, 101, 133-164.
  • [2] Panagos, P., Lugato, E., Jones, A., Borelli, P., Scarpa, S., Orgiazzi, A., Montanarella, L. (2018). Potential sources of anthropogenic copper inputs to european agricultural soils. Sustainability, 10(7), 2380, 1-17.
  • [3] Emon, F.J., Rohani, F., Sumaiya, N., Jannat, F.T., Akter, Y., Shahjahan, M., Kari, Z.A., Tahiluddin, A.B., Goh, K.W. (2023). Bioaccumulation and bioremediation of heavy metals in fishes-A Review. Toxics, 11, 510, 1-28.
  • [4] Woody, C.A., O'Neal, S.L., (2012). Effects of copper on fish and aquatic resources. Report Prepared for The Natura Conservancy. Fisheries Research and Consulting, Anchorage, Alaska. 27 pages (Available:https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/alaska/sw/cpa/Documents/W2013ECopperF062012.pdf).
  • [5] Knittel, M. (1981). Susceptibility of steelhead trout Salmo gairdneri Richardson to redmouth infection Yersinia ruckeri following exposure to copper. Journal of Fish Diseases, 4(1), 33-40.
  • [6] Rougier, F., Troutaud, D., Ndoye, A., Deschaux, P. (1994). Non-specific immune response of Zebrafish, Brachydanio rerio (Hamilton-Buchanan) following copper and zinc exposure. Fish & Shellfish Immunology, 4(2), 115-127.
  • [7] Craig, P.M., Wood, C.M., McClelland, G.B. (2010). Water chemistry alters gene expression and physiological end points of chronic waterborne copper exposure in zebrafish, Danio rerio. Environmental Science and Technology, 44(6), 2156-2162.
  • [8] Solomon, F. (2009). Impacts of copper on aquatic ecosystems and human health. Environment and Communities, 25(8), 25-28.
  • [9] Kaya, H., Akbulut, M. (2015). Effects of waterborne lead exposure in Mozambique tilapia: oxidative stress, osmoregulatory responses, and tissue accumulation. Journal of Aquatic Animal Health, 27(2), 77-87.
  • [10] Yancheva, V., Stoyanova, S., Velcheva, I., Georgieva, E. (2020). Fish as indicators for environmental monitoring and health risk assessment regarding aquatic contamination with pesticides. International Journal of Zoology and Animal Biology, 3(1), 1-6.
  • [11] Vallese, F.D., Stupniki, S., Trillini, M., Belen, F., Di Nezio, M.S., Juan, A., Pistonesi, M.F. (2024). Bioaccumulation study of cadmium and lead in Cyprinus carpio from the Colorado River, using automated electrochemical detection. Water, 17(1), 77.
  • [12] Tüzen, M. (2003). Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry, 80(1), 119-123.
  • [13] Tepe, Y., Türkmen, M., Türkmen, A. (2008). Assessment of heavy metals in two commercial fish species of four Turkish seas. Environmental Monitoring and Assessment, 146, 277-284.
  • [14] Türkmen, M., Türkmen, A., Tepe, Y., Ateş, A., Gökkuş, K. (2008). Determination of metal contaminations in sea foods from Marmara, Aegean and Mediterranean seas: twelve fish species. Food Chemistry, 108(2), 794-800.
  • [15] Maria das Graças, A.K., de Andrade, J.B., de Jesus, D.S., Lemos, V.A., Bandeira, M.L., dos Santos, W. N., Bezerra, M.A., Amorim, F.A.C., Souza, A.S., Ferreira, S.L.C. (2006). Separation and preconcentration procedures for the determination of lead using spectrometric techniques: A review. Talanta, 69(1), 16-24.
  • [16] Zhang, N., Peng, H., Wang, S., Hu, B. (2011). Fast and selective magnetic solid phase extraction of trace Cd, Mn and Pb in environmental and biological samples and their determination by ICP-MS. Microchimica Acta, 175(1), 121-128.
  • [17] Bukkitgar, S.D., Shetti, N.P., Malladi, R.S., Reddy, K.R., Kalanur, S.S., Aminabhavi, T.M. (2020). Novel ruthenium doped TiO2/reduced graphene oxide hybrid as highly selective sensor for the determination of ambroxol. Journal of Molecular Liquids, 300, 112368.
  • [18] Paul, K.B., Kumar, S., Tripathy, S., Vanjari, S.R.K., Singh, V., Singh, S.G. (2016). A highly sensitive self assembled monolayer modified copper doped zinc oxide nanofiber interface for detection of Plasmodium falciparum histidine-rich protein-2: Targeted towards rapid, early diagnosis of malaria. Biosensors and Bioelectronics, 80, 39-46.
  • [19] Kahraman, D., Gürsoy, S.Ş. (2022). Amperometric Glucose Biosensor Prepared by Using Multi-Walled Carbon Nanotubes/Polythiophene Composite. Akademik Gıda, 20(4), 350-357.
  • [20] Ayanda, I.O., Ekhator, U.I., Bello, O.A. (2019). Determination of selected heavy metal and analysis of proximate composition in some fish species from Ogun River, Southwestern Nigeria. Heliyon, 5(10), e02512.
  • [21] Shaikh, A., Badrunnessa, M., Firdaws, J., Rahman, M. S., Pasha, N., Bakshi, P. (2011). A cyclic voltammetric study of the influence of supporting electrolytes on the redox behaviour of Cu(II) in aqueous medium. Journal of the Bangladesh Chemical Society, 24(2), 158-164.
  • [22] Liberato, P.A., Silva, A.F.D.S., Okumura, L.L., Diniz, J.A., Oliveira, A.F.D. (2021). Influence of ionic strength in determination of pKA by voltammetry. Química Nova, 43, 1408-1415.
  • [23] Tunc-Ata, M., Akturk, E. Z., Njjar, M., Kaya, A., Akdogan, A., Onac, C. (2025). Determination of retrorsine in thyme via molecularly imprinted electrochemical sensor: Validation and comparison with chromatographic technique. Food Chemistry, 144818.
  • [24] Njjar, M., Aktürk, E.Z., Kaya, A., Onac, C., Akdogan, A. (2025). A novel MIP electrochemical sensor based on a CuFe2O4NPs@rGO nanocomposite and its application in breast milk samples for the determination of fipronil. Analytical Methods, 17, 5508-5518.
  • [25] Nasiri-Majd, M., Taher, M.A., Fazelirad, H. (2016). Preparation and application of a simple electrochemical sensor for the determination of copper in some real and standard samples. Ionics, 22(2), 289-296.
  • [26] Maddipatla, D., Saeed, T.S., Narakathu, B.B., Obare, S.O., Atashbar, M.Z. (2020). Incorporating a novel hexaazatriphenylene derivative to a flexible screen-printed electrochemical sensor for copper ion detection in water samples. IEEE Sensors Journal, 20(21), 12582-12591.
  • [27] Hassine, C.B.A., Bourourou, M., Barhoumi, H., Jaffrezic, N. (2019). Copper (II) electrochemical sensor based on aluminon as chelating ionophore. IEEE Sensors Journal, 19(19), 8605-8611.
  • [28] A. Mohammed, Y., Abbas, A.A., El Badry Mohamed, M. (2023). Significant applications of an affordable and simply prepared portable carbon‐based potentiometric sensor for the highly selective and sensitive determination of Cu (II) ions released from food contact materials. Applied Organometallic Chemistry, 37(8), e7156.
There are 28 citations in total.

Details

Primary Language English
Subjects Food Engineering, Food Chemistry and Food Sensory Science
Journal Section Research Papers
Authors

Canan Onac 0000-0003-3799-3678

Ahmet Kaya 0000-0001-8805-8474

Publication Date September 30, 2025
Submission Date May 17, 2025
Acceptance Date September 29, 2025
Published in Issue Year 2025 Volume: 23 Issue: 3

Cite

APA Onac, C., & Kaya, A. (2025). Electrochemical Determination of Copper in Fish Samples. Akademik Gıda, 23(3), 210-218. https://doi.org/10.24323/akademik-gida.1793607
AMA Onac C, Kaya A. Electrochemical Determination of Copper in Fish Samples. Akademik Gıda. September 2025;23(3):210-218. doi:10.24323/akademik-gida.1793607
Chicago Onac, Canan, and Ahmet Kaya. “Electrochemical Determination of Copper in Fish Samples”. Akademik Gıda 23, no. 3 (September 2025): 210-18. https://doi.org/10.24323/akademik-gida.1793607.
EndNote Onac C, Kaya A (September 1, 2025) Electrochemical Determination of Copper in Fish Samples. Akademik Gıda 23 3 210–218.
IEEE C. Onac and A. Kaya, “Electrochemical Determination of Copper in Fish Samples”, Akademik Gıda, vol. 23, no. 3, pp. 210–218, 2025, doi: 10.24323/akademik-gida.1793607.
ISNAD Onac, Canan - Kaya, Ahmet. “Electrochemical Determination of Copper in Fish Samples”. Akademik Gıda 23/3 (September2025), 210-218. https://doi.org/10.24323/akademik-gida.1793607.
JAMA Onac C, Kaya A. Electrochemical Determination of Copper in Fish Samples. Akademik Gıda. 2025;23:210–218.
MLA Onac, Canan and Ahmet Kaya. “Electrochemical Determination of Copper in Fish Samples”. Akademik Gıda, vol. 23, no. 3, 2025, pp. 210-8, doi:10.24323/akademik-gida.1793607.
Vancouver Onac C, Kaya A. Electrochemical Determination of Copper in Fish Samples. Akademik Gıda. 2025;23(3):210-8.