BibTex RIS Cite

Meme Lazer Tomografi Sisteminin Tasarımı ve Pilot Klinik Çalışma Sonuçları

Year 2015, Volume: 1 Issue: 1, 58 - 63, 01.01.2015

Abstract

Amaç: Akdeniz Üniversitesi Tıp Fakültesinde geliştirilen Meme Lazer Optik Tomografi MLT sisteminin meme lezyonlarını saptamadaki etkinliğini değerlendirmek. Gereç ve Yöntemler: Çalışmaya toplam 10 hastada 13 lezyon dâhil edildi. MLT sistemi optik prob, elektronik kartlar, bir 1x49’luk optik anahtardan, dalga boyu 808 nm olan diyot lazerden, oluşmaktadır. Önce bütün hastaların memeleri ultrasonografi, mamografi veya manyetik rezonans görüntüleme ile incelendi. Tüm hastalarda ele gelen kitle bulunmaktaydı. Hasta sırt üstü yatarken fiber optik prob hastanın memesindeki kitle bölgesine hafifçe değdirilerek MLT sistemi ile ölçümler alındı. Sağlam meme simetrik bölgesinde alınan ölçümler kontrol gurubu olarak kullanıldı. Ölçümlerden sonra yedi lezyona ultrason altında kor biyopsi, bir hastaya ise cerrahi biyopsi yapıldı. MLT sistemi ile alınan görüntüler radyolojik bulgular ve biyopsi sonuçları ile karşılaştırılarak değerlendirildi. Bulgular: Biyopsi yapılan lezyonlardan beş tanesi invaziv duktual karsinoma, biri lobular karsinoma, biri adenozis ve biri papilloma olarak sonuçlandı. Diğer beş lezyon bir hamartoma, bir postoperativ skar doku, iki kist ve bir mastit ultrasound, MRI ve/veya mamografi ile teşhis edildi. Malign, benign ve mastit olgularında normal meme dokusuna göre daha yüksek kontrast görüldü. Hamartoma, kist ve skar dokusu ise normal meme dokusu ile karşılaştırıldığında bir kontrast oluşturmadı. Sonuç: MLT ile neoplazilerin hamartoma ve kist gibi diğer meme patolojilerinden ayırt edilebildiği gösterildi. Bundan dolayı MLT sisteminin diğer radyolojik görüntüleme sistemleri ile beraber klinikte kullanılma potansiyeli bulunmaktadır

References

  • 1. American Cancer Society. Cancer facts & figures. 2004. http://www.cancer.org/downloads/STT/CAFF_ finalPWsecured.pdf.
  • 2. Aberle DR, Chiles C, Gatsonis C, Hillman BJ, Johnson CD, McClennan BL, Mitchell DG, Pisano ED, Shanall MD, Sorensen AG; American College of Radiology Imaging Network. Imaging and Cancer: Research strategy of the American College of Radiology Imaging Network. Radiology 2005;235:741-51.
  • 3. American Cancer Society. Breast cancer facts & figures. 2003-2004.http://www.cancer.org/downloads/STT/ CAFF2003BrFPWsecured.pdf
  • 4. Carney PA, Miglioretti DL, Yankaskas BC, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med 2003;138:168-75.
  • 5. Rosenberg RD, Hunt WC, Williamson MR, et al. Effects of age, breast density, ethnicity, and estrogen replacement therapy on screening mammographic sensitivity and cancer stage at diagnosis: Review of 183,134 screening mammograms in Albuquerque, New Mexico. Radiology 1998;209:511-8.
  • 6. Kerlikowske K, Grady D, Barclay J, et al. Likelihood ratios for modern screening mammography. Risk of breast cancer based on age and mammographic interpretation. JAMA 1996;276:39-43.
  • 7. Malur S, Wurdinger S, Moritz A, et al. Comparison of written reports of mammography, sonography and magnetic resonance mammography for preoperative evaluation of breast lesions, with special emphasis on magnetic resonance mammography. Breast Cancer Res 2001;3:55-60.
  • 8. Kaiser WA. False positive results in dynamic MR mammography. Causes, ferequency amd methods to avoid. Magn Reson Imaging Clin North Am 1994;2:539-55.
  • 9. Pisano ED, Gatsonis C, Hendrick E, et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 2005;353:1773-83.
  • 10. Caferova S, Uysal F, Balcı P, Saydam S, Canda T. Efficacy and safety of breast radiothermometry in the differential diagnosis of breast lesions. Contemp Oncol 2014;18: 197-203
  • 11. Jong RA, Yaffe MJ, Skarpathiotakis M, et al. Contrastenhanced digital mammography: Initial clinical experience. Radiology 2003;228:842-50.
  • 12. Cheng X, Boas DA. Diffuse optical reflection tomography with continuous wave illumination. Opt Exp 1998;3:118-24.
  • 13. Tian FH, Niu H, Khadka S, Lin ZJ, Liu H. Algorithmic depth compensation improves quantification and noise suppression in functional diffuse optical tomography. Biomed Opt Express 2010;1:441-52.
  • 14. Tavakoli B, Zhu Q. Depth-correction algorithm that improves optical quantification of large breast lesions imaged by diffuse optical tomography. J Biomed Opt 2011; 16:056002.
  • 15. Qi J, Ye Z. CTLM as an adjunct to mammography in the diagnosis of patients with dense breast. Clinical Imaging 2013;37:289-94.
  • 16. Huang MM, Zhu Q. Dual-mesh optical tomography reconstruction method with a depth correction that uses a priori ultrasound information. Appl Opt 2004;43:1654-62.
  • 17. Hoshi Y, Oda I, Wada Y, Ito Y, Yamashita Y, Oda M, Ohta K, Yamada Y, Mamoru T. Visuospatial imagery is a fruitful strategy for the digit span backward task: A study with near-infrared optical tomography. Cognitive Brain Research 2000;9:339-42.
  • 18. Kazancı HÖ, Mercan T, Canpolat M. Design and evaluation of reflectance diffuse optical tomography system. Optical and Quantum Elektronics (Kabul edildi, Online ).
  • 19. Boas DA, Chen K, Grebert D, Franceschini MA. Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans. Opt Lett 2004;29:1506-8.
  • 20. Zhao Q, Ji LJ, Jiang TZ. Improving performance of reflectance diffuse optical imaging using a multicentered mode. J. Biomed Opt 2006;11:064019.
  • 21. Wang LH, Jacques SL, Zheng LQ. MCML - Monte Carlo modeling of photon transport in multi-layered tissues. Computer Methods and Programs in Biomedicine 1995;47: 131-46.
  • 22. Zhi W, Hu X, Qin J, Yin P, Sheng X, Gao SP, Li Q. Solid Breast Lesions: Clinical experience with US guided diffuse optical tomography combined with conventional US. Radiology 2012;262:371-8.

Design of Breast Laser Tomography System and Pilot Clinical Results

Year 2015, Volume: 1 Issue: 1, 58 - 63, 01.01.2015

Abstract

Objective: To evaluate the capacity of the breast diffuse optical tomography system to detect breast lesions. The system has been developed in our Faculty of Medicine.Material and Methods: The breast diffuse optical tomography system consists of an optical fiber probe, electronics boards, one 1x49 optics switch and a diode laser with a wavelength of 808 nm. Thirteen lesions from 10 patients were examined using ultrasound, mammography or magnetic resonance imaging MRI . All the patients had a palpable lump or mass located superficially. The optical probe was then placed gently on the breast with the patient in the supine position. The first measurement was taken on the lesion and the second from the symmetrical counterpart of the other breast as a control group. After the measurements, ultrasound-guided vacuum or core biopsy were performed on seven lesions. One patient underwent surgical biopsy. Images of the breast diffuse optical tomography system were evaluated by comparing them with the radiological images.results: Ultrasound-guided biopsies or surgical biopsy revealed five ductal invasive carcinomas, one invasive lobular carcinoma, one adenosis and one papilloma. The other five lesions one hamartoma, one postoperative scar tissue, two cysts, one mastitis were diagnosed by ultrasound, MRI and/or mammography. Malignant or benign tumors and mastitis had higher contrast than normal breast tissue. Hamartoma, cysts and scar tissue produced no contrast when compared with the normal breast tissue. conclusion: We have demonstrated that the breast diffuse optical tomography system has the capacity to differentiate breast tumors from cyst and hamartoma

References

  • 1. American Cancer Society. Cancer facts & figures. 2004. http://www.cancer.org/downloads/STT/CAFF_ finalPWsecured.pdf.
  • 2. Aberle DR, Chiles C, Gatsonis C, Hillman BJ, Johnson CD, McClennan BL, Mitchell DG, Pisano ED, Shanall MD, Sorensen AG; American College of Radiology Imaging Network. Imaging and Cancer: Research strategy of the American College of Radiology Imaging Network. Radiology 2005;235:741-51.
  • 3. American Cancer Society. Breast cancer facts & figures. 2003-2004.http://www.cancer.org/downloads/STT/ CAFF2003BrFPWsecured.pdf
  • 4. Carney PA, Miglioretti DL, Yankaskas BC, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med 2003;138:168-75.
  • 5. Rosenberg RD, Hunt WC, Williamson MR, et al. Effects of age, breast density, ethnicity, and estrogen replacement therapy on screening mammographic sensitivity and cancer stage at diagnosis: Review of 183,134 screening mammograms in Albuquerque, New Mexico. Radiology 1998;209:511-8.
  • 6. Kerlikowske K, Grady D, Barclay J, et al. Likelihood ratios for modern screening mammography. Risk of breast cancer based on age and mammographic interpretation. JAMA 1996;276:39-43.
  • 7. Malur S, Wurdinger S, Moritz A, et al. Comparison of written reports of mammography, sonography and magnetic resonance mammography for preoperative evaluation of breast lesions, with special emphasis on magnetic resonance mammography. Breast Cancer Res 2001;3:55-60.
  • 8. Kaiser WA. False positive results in dynamic MR mammography. Causes, ferequency amd methods to avoid. Magn Reson Imaging Clin North Am 1994;2:539-55.
  • 9. Pisano ED, Gatsonis C, Hendrick E, et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 2005;353:1773-83.
  • 10. Caferova S, Uysal F, Balcı P, Saydam S, Canda T. Efficacy and safety of breast radiothermometry in the differential diagnosis of breast lesions. Contemp Oncol 2014;18: 197-203
  • 11. Jong RA, Yaffe MJ, Skarpathiotakis M, et al. Contrastenhanced digital mammography: Initial clinical experience. Radiology 2003;228:842-50.
  • 12. Cheng X, Boas DA. Diffuse optical reflection tomography with continuous wave illumination. Opt Exp 1998;3:118-24.
  • 13. Tian FH, Niu H, Khadka S, Lin ZJ, Liu H. Algorithmic depth compensation improves quantification and noise suppression in functional diffuse optical tomography. Biomed Opt Express 2010;1:441-52.
  • 14. Tavakoli B, Zhu Q. Depth-correction algorithm that improves optical quantification of large breast lesions imaged by diffuse optical tomography. J Biomed Opt 2011; 16:056002.
  • 15. Qi J, Ye Z. CTLM as an adjunct to mammography in the diagnosis of patients with dense breast. Clinical Imaging 2013;37:289-94.
  • 16. Huang MM, Zhu Q. Dual-mesh optical tomography reconstruction method with a depth correction that uses a priori ultrasound information. Appl Opt 2004;43:1654-62.
  • 17. Hoshi Y, Oda I, Wada Y, Ito Y, Yamashita Y, Oda M, Ohta K, Yamada Y, Mamoru T. Visuospatial imagery is a fruitful strategy for the digit span backward task: A study with near-infrared optical tomography. Cognitive Brain Research 2000;9:339-42.
  • 18. Kazancı HÖ, Mercan T, Canpolat M. Design and evaluation of reflectance diffuse optical tomography system. Optical and Quantum Elektronics (Kabul edildi, Online ).
  • 19. Boas DA, Chen K, Grebert D, Franceschini MA. Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans. Opt Lett 2004;29:1506-8.
  • 20. Zhao Q, Ji LJ, Jiang TZ. Improving performance of reflectance diffuse optical imaging using a multicentered mode. J. Biomed Opt 2006;11:064019.
  • 21. Wang LH, Jacques SL, Zheng LQ. MCML - Monte Carlo modeling of photon transport in multi-layered tissues. Computer Methods and Programs in Biomedicine 1995;47: 131-46.
  • 22. Zhi W, Hu X, Qin J, Yin P, Sheng X, Gao SP, Li Q. Solid Breast Lesions: Clinical experience with US guided diffuse optical tomography combined with conventional US. Radiology 2012;262:371-8.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Murat Canpolat This is me

Hüseyin Özgür Kazancı This is me

Tanju Mercan This is me

Emel Alimoğlu This is me

Publication Date January 1, 2015
Published in Issue Year 2015 Volume: 1 Issue: 1

Cite

Vancouver Canpolat M, Kazancı HÖ, Mercan T, Alimoğlu E. Meme Lazer Tomografi Sisteminin Tasarımı ve Pilot Klinik Çalışma Sonuçları. Akd Med J. 2015;1(1):58-63.