BibTex RIS Cite

Mezenkimal Kök Hücreler ve İmmünomodülasyon Fonksiyonları

Year 2020, Volume: 6 Issue: 3, 324 - 333, 01.01.2020

Abstract

Mezenkimal kök hücreler MKH kendilerini yenileme ve özellikle mezoderm kaynaklı hücreler olan osteoblastlar, adipositler ve kondrositlere olmak üzere, ektodermal ve endodermal kaynaklı hücrelere de farklılaşabilme yeteneği ile tanınmaktadırlar. Farklılaşma yeteneklerinden dolayı, MKH’ler doku mühendisliğinde terapötik uygulamalar için umut verici adaylar olarak ortaya çıkmaktadır. Ayrıca plasental MKH’ler; plasentanın doğumdan sonra atılan bir doku olması, hücre izolasyonunun kolay olması, etik tartışmalara yol açmaması ve kültür ortamında yüksek bölünme kapasitesi gibi özellikleri nedeniyle oldukça fazla tercih edilen kök hücrelerdir. İmmünosüpresif etkisi bulunan mezenkimal kök hücrelerin bağışıklık yanıtının düzenlenmesinde rol oynadığı ve bağışıklık yanıtı baskıladığı kanıtlanmıştır. Biz bu derlemede MKH’lerin başta T hücreler olmak üzere dendritik hücre DH ve diğer immün sistem hücreleri üzerine olan immünomodülatör etkilerini tartıştık. Bu bağlamda, MKH’ler dendritik hücrelerin olgunlaşmasını, sitokin üretimini ve T hücre uyarıcı kapasitesini etkin bir şekilde inhibe eder. Ayrıca, doğal öldürücü hücrelerin NK ve T lenfositlerin proliferasyonunu, sitokin sekresyonunu ve sitotoksik potansiyelini belirgin şekilde bozarlar. Çeşitli hayvan modelleri, MKH’lerin immün düzenleyici özelliklerini doğrular. Bu nedenle uygulanan MKH’ler, akut graft versus-host hastalığının GVHD tedavisinde kullanılabilmektedirler. Şiddetli akut GVHD hastalarıyla yapılan klinik çalışmalar, MKH’lerin uygulanmasının önemli klinik yanıtlarla sonuçlandığını ortaya koymaktadır. In-vitro miks-lenfosit çalışmalarında, kültüre mezenkimal kök hücrelerinin ilave edilmesi ile birlikte alloreaktif T hücre yanıtının baskılandığı saptanmıştır. Bu özelliği ile allojeneik hematopoietik kök hücre nakillerinde mezenkimal kök hücre infüzyonu sadece engrafmanı hızlandırmayıp, aynı zamanda akut ve kronik Graft-Versus-Host Hastalığı sıklığını da azaltmaktadır. İmmünomodülatör yetenekleri ve düşük immünojenisiteleri nedeniyle, MKH’ler, immün aracılı hastalıkların önlenmesi ve tedavisi için umut verici adaylardır

References

  • Can A. A concise review on the classification and nomenclature of stem cells. Turk J Hematol 2008; 25:57- 9.
  • Weissman IL. Stem cells: Units of development, units of regeneration, and units in evolution. Cell 2000; 100:57- 168.
  • Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW. Human mesenchymal stem cells engraft and demonstrate site- specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6:1282-6.
  • Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001;
  • Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4:267-74.
  • Ben-Ami E, Berrih-Aknin S, Miller A. Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmun Rev 2011; 10:410-5.
  • Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276:71-4.
  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143-7.
  • Pittenger MF, Marshak DR. Mesenchymal stem cells of human adult bone marrow. New York: Cold Spring Harbor, 2001.
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8:315-17.
  • Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2010; 28:585-96.
  • Pojda Z, Machaj EK, Oldak T, Gajkowska A, Jastrzewska M. Nonhematopoietic stem cells of fetal origin-how much of today’s enthusiasm will pass the time test? Folia Histochem Cytobiol 2010; 43:209-12.
  • König J, Huppertz B, Desoye G, Parolini O, Fröhlich JD, Weiss G, Dohr G, Sedlmayr P, Lang I. Amnion-derived mesenchymal stromal cells show angiogenic properties but resist differentiation into mature endothelial cells. Stem Cells Dev 2012; 21(8):1309-20.
  • Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue- derived MSC. Cell Commun Signal 2011; 9:12.
  • Rastegar F, Shenaq D, Huang J, Zhang W, Zhang BQ, He BC, Chen L, Zuo GW, Luo Q, Shi Q, Wagner ER, Huang E, Gao Y, Gao JL, Kim SH, Zhou JZ, Bi Y, Su Y, Zhu G, Luo J, Luo X, Qin J, Reid RR, Luu HH, Haydon RC, Deng ZL, He TC. Mesenchymal stem cells: Molecular characteristics and clinical applications. World J Stem Cells 2010; 2:67-80.
  • Kim MJ, Shin KS, Jeon JH, Lee DR, Shim SH, Kim JK, Cha DH, Yoon TK, Kim GJ. Human chorionic-plate- derived mesenchymal stem cells and Wharton’s jelly- derived mesenchymal stem cells: A comparative analysis of their potential as placenta-derived stem cells. Cell Tissue Res 2011; 346(1):53-64.
  • Choi JH, Jung J, Na KH, Cho KJ, Yoon TK, Kim GJ. Effect of mesenchymal stem cells and extracts derived from the placenta on trophoblast invasion and immune responses. Stem Cells Dev 2014; 23(2):132-45.
  • Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2008; 26(1):212-22.
  • Liu KJ, Wang CJ, Chang CJ, Hu HI, Hsu PJ, Wu YC, Bai CH, Sytwu HK, Yen BL. Surface expression of HLA-G is involved in mediating immunomodulatory effects of placenta-derived multipotent cells (PDMCs) towards natural killer lymphocytes. Cell Transpl 2011; 20(11e12):1721-30.
  • Bailo M, Soncini M, Vertua E, Signoroni PB, Sanzone S, Lombardi G, Arienti D, Calamani F, Zatti D, Paul P, Albertini A, Zorzi F, Cavagnini A, Candotti F, Wengler GS, Parolini O. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 2004; 78(10):1439-48.
  • Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 2008; 26(1):182-92.
  • Magatti M, De Munari S, Vertua E, Nassauto C, Albertini A, Wengler GS, Parolini O. Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transpl 2009; 18(8):899-914.
  • Parolini O, Caruso M. Review: preclinical studies on placenta-derived cells and amniotic membrane: An update. Placenta 2011; 32 Suppl 2:186-95.
  • Yang ZX, Han ZB, Ji YR, Wang YW, Liang L, Chi Y, Yang SG, Li LN, Luo WF, Li JP, Chen DD, Du WJ, Cao XC, Zhuo GS, Wang T, Han ZC. CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One 2013; 8(3):e59354.
  • Vellasamy S, Sandrasaigaran P, Vidyadaran S, Abdullah M, George E, Ramasamy R. Mesenchymal stem cells of human placenta and umbilical cord suppress T-cell proliferation at G0 phase of cell cycle. Cell Biol. Int 2013; 37(3):250-56.
  • Manochantr S, U-pratya Y, Kheolamai P, Rojphisan S, Chayosumrit M, Tantrawatpan C, Supokawej A, Issaragrisil S. Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, Wharton’s jelly and umbilical cord. Intern Med. J 2013; 43(4):430-39.
  • Karlsson H, Erkers T, Nava S, Ruhm S, Westgren M, Ringdén O. Stromal cells from term fetal membrane are highly suppressive in allogeneic settings in vitro. Clin. Exp. Immunol 2012; 167(3):543-55.
  • Li C, Zhang W, Jiang X, Mao N. Human-placenta- derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells. Cell Tissue Res 2007; 330(3):437-46.
  • Erkers T, Nava S, Yosef J, Ringdén O, Kaipe H. Decidual stromal cells promote regulatory T cells and suppress alloreactivity in a cell contact-dependent manner. Stem Cells Dev 2013; 22(19):2596-605.
  • Abumaree MH, Abomaray FM, Alshabibi MA, AlAskar AS, Kalionis B. Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Placenta 2017; 59:87-95.
  • Jones BJ, Brooke G, Atkinson K, McTaggart SJ. Immunosuppression by placental indoleamine 2,3- dioxygenase: A role for mesenchymal stem cells. Placenta 2007; 28(11e12):1174-81.
  • Gu YZ, Xue Q, Chen YJ, Yu GH, Qing MD, Shen Y, Wang MY, Shi Q, Zhang XG. Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells. Hum. Immunol 2013; 74(3):267-76.
  • Mareschi K, Castiglia S, Sanavio F, Rustichelli D, Muraro M, Defedele D, Bergallo M, Fagioli F. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta. Exp Hematol 2016; 44(2):138-150.
  • Alikarami F, Yari F, Amirizadeh N, Nikougoftar M, Jalili MA. The Immunosuppressive activity of amniotic membrane mesenchymal stem cells on T Lymphocytes. Avicenna J Med Biotechnol 2015; 7(3):90-6.
  • Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2016; 37(1):115-25.
  • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011; 11(11):723-37.
  • Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, AlTalabani AA, Knawy BA. Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev 2013; 9(1):16-31.
  • Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449:419-26.
  • Razavi GSE, Allen T. Emerging role of interleukins in Cancer treatment. Immunome Res 2015; 11:1-17.
  • Abomaray FM, Al Jumah MA, Alsaad KO, Jawdat D, Al Khaldi A, Al Askar AS, Al Harthy S, Al Subayyil AM, Khatlani T, Alawad AO, Alkushi A, Kalionis B, Abumaree MH. Phenotypic and functional characterization of mesenchymal stem/multipotent stromal cells from decidua basalis of human term placenta. Stem Cells Int 2016; 5184601.
  • Durr S, Kindler V. Implication of indolamine 2,3 dioxygenase in the tolerance toward fetuses, tumors, and allografts. J Leukoc Biol 2013; 93(5):681-7.
  • Kang JW, Koo HC, Hwang SY, Kang SK, Ra JC, Lee MH, Park YH. Immunomodulatory effects of human amniotic membranederived mesenchymal stem cells. J Vet Sci 2012;13 (1):23-31.
  • Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen- specifi c T cells to their cognate peptide. Blood 2003;
  • Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecifi c mitogenic stimuli. Blood 2002; 99:3838-43.
  • Zhou ZY, Chen SL, Shen N, Lu Y. Cytokines and Behcet’s disease. Autoimmun Rev 2012; 11(10):699-704.
  • Zhao S, Wehner R, Bornhäuser M, Wassmuth R, Bachmann M, Schmitz M. Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev 2010; 19(5):607-14
  • Sallusto F, Lanzavecchia A. Human Th17 cells in infection and autoimmunity. Microbes Infect 2009; 11:620-4.
  • Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105:1815-22.
  • Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 2009; 57:1192-203.
  • Rafei M, Campeau PM, Aguilar-Mahecha A, Buchanan M, Williams, Birman E, Yuan S, Young YK, Boivin MN, Forner K, Basik M, Galipeau J. Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol 2009; 182:5994-6002.
  • Chang CJ, Yen ML, Chen YC, Chien CC, Huang HI, Bai CH, Yen BL. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 2006; 24 (11):2466-77.
  • Parolini O, Souza-Moreira L, O’Valle F, Magatti M, Hernandez- Cortes P, Gonzalez-Rey E, Delgado M. Therapeutic effect of human amniotic membrane-derived cells on experimental arthritis and other inflammatory disorders. Arthritis&Rheumatology 2014; 66(2):327-39.
  • Ohshima M, Yamahara K, Ishikane S, Harada K, Tsuda H, Otani K, Taguchi A, Miyazato M, Katsuragi S, Yoshimatsu J, Kodama M, Kangawa K, Ikeda T. Systemic transplantation of allogenic fetal membrane-derived mesenchymal stem cells suppresses Th1 and Th17 T cell responses in experimental autoimmune myocarditis. Journal of Molecular and Cellular Cardiology 2012; 53(3):420-8.
  • Wolbank S, Peterbauer A, Fahrner M, Hennerbichler S, van Griensven M, Stadler G et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: A comparison with human mesenchymal stem cells from adipose tissue. Tissue Engineering 2007; 13(6):1173-83.
  • Banas RA, Miller C, Guzik L, Zeevi A. Amnion derived multipotent progenitor cells inhibit blood monocyte differentiation into mature dendritic cells. Cell Transplantation 2014; 23(9):1111-25.
  • Rossi D, Pianta S, Magatti M, Sedlmayr P, Parolini O. Characterization of the conditioned medium from amniotic membrane cells: Prostaglandins as Key effectors of its immunomodulatory activity. PLoS One 2012; 7(10):e46956.
  • Pianta S, Bonassi-Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, Parolini O. Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev 2015; 11(3):394-407.
  • Manuelpillai U, Moodley Y, Borlongan CV, Parolini O. Amniotic membrane and amniotic cells: Potential therapeutic tools to combat tissue inflammation and fibrosis? Placenta 2011; 32 Suppl 4:320-5.
  • Glenn JD, Whartenby KA. Mesenchymal Stem Cell Modulation of TH17 Cells. Int J Stem Cell Res Ther 2016; 3:035.
  • Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105:4120-26.
  • Luz-Crawford P, Noël D, Fernandez X, Khoury M, Figueroa F, Carrión F, Jorgensen C, Djouad F. Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS One 2012; 7:e45272.
  • Duffy MM, Pindjakova J, Hanley SA, McCarthy C, Weidhofer GA, Sweeney EM, English K, Shaw G, Murphy JM, Barry FP, Mahon BP, Belton O, Ceredig R, Griffin MD. Mesenchymal stem cell inhibition of T-helper 17 cell- differentiation is triggered by cell-cell contact and mediated by prostaglandin E2 via the EP4 receptor. Eur J Immunol 2011; 41:2840-51.
  • Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 2014; 6(5):552-70.
  • Castro-Manrreza ME, Mayani H, Monroy-García A, Flores-Figueroa E, Chávez-Rueda K, Legorreta- Haquet V, Santiago-Osorio E, Montesinos JJ. Human mesenchymal stromal cells from adult and neonatal sources: A comparative in vitro analysis of their immunosuppressive properties against T cells. Stem Cells Dev 2014; 23(11):1217-32.

Mesenchymal Stem Cells and Immunomodulatory Functions

Year 2020, Volume: 6 Issue: 3, 324 - 333, 01.01.2020

Abstract

Mesenchymal stem cells MSC are known for their regeneration ability and differentiation into various cell types, especially mesodermal cells such as osteoblasts, adipocytes and chondrocytes, but also ectodermal and endodermal cell types. Due to their differentiation abilities, MDGs are emerging as promising candidates for therapeutic applications in tissue engineering. Placental MSCs are highly preferred because the placenta is easy to obtain as it is discarded after birth, it is easy to isolate the MSCs, the process does not lead to ethical discussions, and the dividing capacity in culture medium is high. Mesenchymal stem cells with an immunosuppressive effect have been proven to play a role in regulating the immune response by suppressing it. Here, we reviewed the immunomodulatory effects of MSCs on dendritic cells DH , and other immune system cells, especially T cells. In this context, MSCs effectively inhibit the maturation of dendritic cells, cytokine production, and the stimulus capacity of T cells. In addition, MSCs significantly impair the proliferation, cytokine secretion and cytotoxic potential of natural killer cells NK and T lymphocytes. Various animal models have confirmed the immunoregulatory properties of MSCs. Therefore, MSC treatment can be used for acute graft versus host disease GVHD . Clinical studies on severe acute GVHD patients suggest that the application of MSCs results in significant clinical responses. In-vitro mix-lymphocyte studies revealed that the alloreactive T cell response was suppressed by the addition of mesenchymal stem cells to the culture. With this feature, mesenchymal stem cell infusion in allogeneic hematopoietic stem cell transplantation not only accelerates the engraftment but also reduces the frequency of acute and chronic Graft-Versus-Host Disease. Because of their immunomodulatory abilities and low immunogenicity, MSCs are promising candidates for the prevention and treatment of immune-mediated diseases.

References

  • Can A. A concise review on the classification and nomenclature of stem cells. Turk J Hematol 2008; 25:57- 9.
  • Weissman IL. Stem cells: Units of development, units of regeneration, and units in evolution. Cell 2000; 100:57- 168.
  • Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW. Human mesenchymal stem cells engraft and demonstrate site- specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6:1282-6.
  • Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001;
  • Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4:267-74.
  • Ben-Ami E, Berrih-Aknin S, Miller A. Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmun Rev 2011; 10:410-5.
  • Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276:71-4.
  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143-7.
  • Pittenger MF, Marshak DR. Mesenchymal stem cells of human adult bone marrow. New York: Cold Spring Harbor, 2001.
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8:315-17.
  • Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2010; 28:585-96.
  • Pojda Z, Machaj EK, Oldak T, Gajkowska A, Jastrzewska M. Nonhematopoietic stem cells of fetal origin-how much of today’s enthusiasm will pass the time test? Folia Histochem Cytobiol 2010; 43:209-12.
  • König J, Huppertz B, Desoye G, Parolini O, Fröhlich JD, Weiss G, Dohr G, Sedlmayr P, Lang I. Amnion-derived mesenchymal stromal cells show angiogenic properties but resist differentiation into mature endothelial cells. Stem Cells Dev 2012; 21(8):1309-20.
  • Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue- derived MSC. Cell Commun Signal 2011; 9:12.
  • Rastegar F, Shenaq D, Huang J, Zhang W, Zhang BQ, He BC, Chen L, Zuo GW, Luo Q, Shi Q, Wagner ER, Huang E, Gao Y, Gao JL, Kim SH, Zhou JZ, Bi Y, Su Y, Zhu G, Luo J, Luo X, Qin J, Reid RR, Luu HH, Haydon RC, Deng ZL, He TC. Mesenchymal stem cells: Molecular characteristics and clinical applications. World J Stem Cells 2010; 2:67-80.
  • Kim MJ, Shin KS, Jeon JH, Lee DR, Shim SH, Kim JK, Cha DH, Yoon TK, Kim GJ. Human chorionic-plate- derived mesenchymal stem cells and Wharton’s jelly- derived mesenchymal stem cells: A comparative analysis of their potential as placenta-derived stem cells. Cell Tissue Res 2011; 346(1):53-64.
  • Choi JH, Jung J, Na KH, Cho KJ, Yoon TK, Kim GJ. Effect of mesenchymal stem cells and extracts derived from the placenta on trophoblast invasion and immune responses. Stem Cells Dev 2014; 23(2):132-45.
  • Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2008; 26(1):212-22.
  • Liu KJ, Wang CJ, Chang CJ, Hu HI, Hsu PJ, Wu YC, Bai CH, Sytwu HK, Yen BL. Surface expression of HLA-G is involved in mediating immunomodulatory effects of placenta-derived multipotent cells (PDMCs) towards natural killer lymphocytes. Cell Transpl 2011; 20(11e12):1721-30.
  • Bailo M, Soncini M, Vertua E, Signoroni PB, Sanzone S, Lombardi G, Arienti D, Calamani F, Zatti D, Paul P, Albertini A, Zorzi F, Cavagnini A, Candotti F, Wengler GS, Parolini O. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 2004; 78(10):1439-48.
  • Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 2008; 26(1):182-92.
  • Magatti M, De Munari S, Vertua E, Nassauto C, Albertini A, Wengler GS, Parolini O. Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transpl 2009; 18(8):899-914.
  • Parolini O, Caruso M. Review: preclinical studies on placenta-derived cells and amniotic membrane: An update. Placenta 2011; 32 Suppl 2:186-95.
  • Yang ZX, Han ZB, Ji YR, Wang YW, Liang L, Chi Y, Yang SG, Li LN, Luo WF, Li JP, Chen DD, Du WJ, Cao XC, Zhuo GS, Wang T, Han ZC. CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One 2013; 8(3):e59354.
  • Vellasamy S, Sandrasaigaran P, Vidyadaran S, Abdullah M, George E, Ramasamy R. Mesenchymal stem cells of human placenta and umbilical cord suppress T-cell proliferation at G0 phase of cell cycle. Cell Biol. Int 2013; 37(3):250-56.
  • Manochantr S, U-pratya Y, Kheolamai P, Rojphisan S, Chayosumrit M, Tantrawatpan C, Supokawej A, Issaragrisil S. Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, Wharton’s jelly and umbilical cord. Intern Med. J 2013; 43(4):430-39.
  • Karlsson H, Erkers T, Nava S, Ruhm S, Westgren M, Ringdén O. Stromal cells from term fetal membrane are highly suppressive in allogeneic settings in vitro. Clin. Exp. Immunol 2012; 167(3):543-55.
  • Li C, Zhang W, Jiang X, Mao N. Human-placenta- derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells. Cell Tissue Res 2007; 330(3):437-46.
  • Erkers T, Nava S, Yosef J, Ringdén O, Kaipe H. Decidual stromal cells promote regulatory T cells and suppress alloreactivity in a cell contact-dependent manner. Stem Cells Dev 2013; 22(19):2596-605.
  • Abumaree MH, Abomaray FM, Alshabibi MA, AlAskar AS, Kalionis B. Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Placenta 2017; 59:87-95.
  • Jones BJ, Brooke G, Atkinson K, McTaggart SJ. Immunosuppression by placental indoleamine 2,3- dioxygenase: A role for mesenchymal stem cells. Placenta 2007; 28(11e12):1174-81.
  • Gu YZ, Xue Q, Chen YJ, Yu GH, Qing MD, Shen Y, Wang MY, Shi Q, Zhang XG. Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells. Hum. Immunol 2013; 74(3):267-76.
  • Mareschi K, Castiglia S, Sanavio F, Rustichelli D, Muraro M, Defedele D, Bergallo M, Fagioli F. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta. Exp Hematol 2016; 44(2):138-150.
  • Alikarami F, Yari F, Amirizadeh N, Nikougoftar M, Jalili MA. The Immunosuppressive activity of amniotic membrane mesenchymal stem cells on T Lymphocytes. Avicenna J Med Biotechnol 2015; 7(3):90-6.
  • Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2016; 37(1):115-25.
  • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011; 11(11):723-37.
  • Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, AlTalabani AA, Knawy BA. Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev 2013; 9(1):16-31.
  • Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449:419-26.
  • Razavi GSE, Allen T. Emerging role of interleukins in Cancer treatment. Immunome Res 2015; 11:1-17.
  • Abomaray FM, Al Jumah MA, Alsaad KO, Jawdat D, Al Khaldi A, Al Askar AS, Al Harthy S, Al Subayyil AM, Khatlani T, Alawad AO, Alkushi A, Kalionis B, Abumaree MH. Phenotypic and functional characterization of mesenchymal stem/multipotent stromal cells from decidua basalis of human term placenta. Stem Cells Int 2016; 5184601.
  • Durr S, Kindler V. Implication of indolamine 2,3 dioxygenase in the tolerance toward fetuses, tumors, and allografts. J Leukoc Biol 2013; 93(5):681-7.
  • Kang JW, Koo HC, Hwang SY, Kang SK, Ra JC, Lee MH, Park YH. Immunomodulatory effects of human amniotic membranederived mesenchymal stem cells. J Vet Sci 2012;13 (1):23-31.
  • Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen- specifi c T cells to their cognate peptide. Blood 2003;
  • Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecifi c mitogenic stimuli. Blood 2002; 99:3838-43.
  • Zhou ZY, Chen SL, Shen N, Lu Y. Cytokines and Behcet’s disease. Autoimmun Rev 2012; 11(10):699-704.
  • Zhao S, Wehner R, Bornhäuser M, Wassmuth R, Bachmann M, Schmitz M. Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev 2010; 19(5):607-14
  • Sallusto F, Lanzavecchia A. Human Th17 cells in infection and autoimmunity. Microbes Infect 2009; 11:620-4.
  • Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105:1815-22.
  • Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 2009; 57:1192-203.
  • Rafei M, Campeau PM, Aguilar-Mahecha A, Buchanan M, Williams, Birman E, Yuan S, Young YK, Boivin MN, Forner K, Basik M, Galipeau J. Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol 2009; 182:5994-6002.
  • Chang CJ, Yen ML, Chen YC, Chien CC, Huang HI, Bai CH, Yen BL. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 2006; 24 (11):2466-77.
  • Parolini O, Souza-Moreira L, O’Valle F, Magatti M, Hernandez- Cortes P, Gonzalez-Rey E, Delgado M. Therapeutic effect of human amniotic membrane-derived cells on experimental arthritis and other inflammatory disorders. Arthritis&Rheumatology 2014; 66(2):327-39.
  • Ohshima M, Yamahara K, Ishikane S, Harada K, Tsuda H, Otani K, Taguchi A, Miyazato M, Katsuragi S, Yoshimatsu J, Kodama M, Kangawa K, Ikeda T. Systemic transplantation of allogenic fetal membrane-derived mesenchymal stem cells suppresses Th1 and Th17 T cell responses in experimental autoimmune myocarditis. Journal of Molecular and Cellular Cardiology 2012; 53(3):420-8.
  • Wolbank S, Peterbauer A, Fahrner M, Hennerbichler S, van Griensven M, Stadler G et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: A comparison with human mesenchymal stem cells from adipose tissue. Tissue Engineering 2007; 13(6):1173-83.
  • Banas RA, Miller C, Guzik L, Zeevi A. Amnion derived multipotent progenitor cells inhibit blood monocyte differentiation into mature dendritic cells. Cell Transplantation 2014; 23(9):1111-25.
  • Rossi D, Pianta S, Magatti M, Sedlmayr P, Parolini O. Characterization of the conditioned medium from amniotic membrane cells: Prostaglandins as Key effectors of its immunomodulatory activity. PLoS One 2012; 7(10):e46956.
  • Pianta S, Bonassi-Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, Parolini O. Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev 2015; 11(3):394-407.
  • Manuelpillai U, Moodley Y, Borlongan CV, Parolini O. Amniotic membrane and amniotic cells: Potential therapeutic tools to combat tissue inflammation and fibrosis? Placenta 2011; 32 Suppl 4:320-5.
  • Glenn JD, Whartenby KA. Mesenchymal Stem Cell Modulation of TH17 Cells. Int J Stem Cell Res Ther 2016; 3:035.
  • Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105:4120-26.
  • Luz-Crawford P, Noël D, Fernandez X, Khoury M, Figueroa F, Carrión F, Jorgensen C, Djouad F. Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS One 2012; 7:e45272.
  • Duffy MM, Pindjakova J, Hanley SA, McCarthy C, Weidhofer GA, Sweeney EM, English K, Shaw G, Murphy JM, Barry FP, Mahon BP, Belton O, Ceredig R, Griffin MD. Mesenchymal stem cell inhibition of T-helper 17 cell- differentiation is triggered by cell-cell contact and mediated by prostaglandin E2 via the EP4 receptor. Eur J Immunol 2011; 41:2840-51.
  • Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 2014; 6(5):552-70.
  • Castro-Manrreza ME, Mayani H, Monroy-García A, Flores-Figueroa E, Chávez-Rueda K, Legorreta- Haquet V, Santiago-Osorio E, Montesinos JJ. Human mesenchymal stromal cells from adult and neonatal sources: A comparative in vitro analysis of their immunosuppressive properties against T cells. Stem Cells Dev 2014; 23(11):1217-32.
There are 64 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Erhan Cebeci This is me

Türkan Yanık This is me

Emre Çetindağ This is me

Kerem Yanar This is me

Gizem Korkmaz This is me

Emin Türkay Korgun This is me

Publication Date January 1, 2020
Published in Issue Year 2020 Volume: 6 Issue: 3

Cite

Vancouver Cebeci E, Yanık T, Çetindağ E, Yanar K, Korkmaz G, Korgun ET. Mezenkimal Kök Hücreler ve İmmünomodülasyon Fonksiyonları. Akd Med J. 2020;6(3):324-33.