Research Article
BibTex RIS Cite

The Effects of Hydrogen Peroxide Application on Physio-chemical Properties of Strawberry (Fragaria ananassa, var. Festival) Fruits in Postharvest Storage Period

Year 2022, , 315 - 323, 30.04.2022
https://doi.org/10.35414/akufemubid.1003264

Abstract

Disassembly of cell wall polysaccharides play an important role in postharvest fruit texture softening. Reactive oxygen species (ROS) are involved in fruit ripening. Here, the role of hydrogen peroxide (H2O2), acting as a ROS, on physical, biochemical and molecular properties and polysaccharide content of strawberry fruits during storage at +4 oC was investigated. Strawberry fruits harvested at commercial ripening stage were immersed in H2O2solutions (0, 100 and 500 mM) for 30 minutes, then stored at +4 oC for 8 days. The results showed that 100 mM H2O2treatment significantly increased fruit firmness, decreased water soluble pectin and expression of cell wall related genes, polygalacturonase (PG) and pectate lyase (PL). These results suggested that overall morphological and biochemical quality of strawberry could be effectively maintained by 100 mM H2O2treatment in postharvest storage conditions.

References

  • AL-Saikhan, M.S. and Shalaby, T.A., 2019. Effect of hydrogen peroxide (H2O2) treatment on physicochemical characteristics of tomato fruits during postharvest storage. Australian Journal of Crops Science, 13(05), 798-802. Bayoumi, Y. A., 2008. Improvement of postharvest keeping quality of white pepper fruits (Capsicum annuum, L.) by hydrogen peroxide treatment under storage conditions. Acta Biologica Szegediensis, 52(1), 7-15. Brummel, D. A. and Harpster, M. H., 2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 47, 311-339. Čamagajevac, I. Š., Maronić, D. Š., Pfeiffer, T. Ž., Bek, N. and Lončarić, Z., 2019. Nitric Oxide and Hydrogen Peroxide in Plant Response to Biotic Stress. In: Gupta D., Palma J., Corpas F. (eds) Nitric Oxide and Hydrogen Peroxide Signalling in Higher Plants. Springer Nature Switzerland, 221-234 Chen, Y. H., Hung, Y. C., Chen, M. Y., Lin, M. S. and Lin, H. T., 2019. Enhanced storability of blueberries by acidic electrolyzed oxidizing water application may be mediated by regulating ROS metabolism. Food Chemistry, 270, 229-235.
  • FAO (2020) http://www.fao.org/faostat/en/#data/QC (February 2022)
  • Felizini, E., Lichter, A., Smilanik, J.L. and Ippolito, A., 2016. Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biology and Technology, 122, 53-69.
  • Figueroa, C. R., Pimentel, P., Gaete-Eastman, C., Moya, M., Herrera, R. and Caligari, P. D. S., 2008. Softening rate of the Chilean strawberry (Fragaria chiloensis) fruit reflects the expression of polygalacturonase and pectate lyase genes. Postharvest Biology and Technology, 49, 210-220.
  • Figueroa, C. R., Rosli, H. G., Civello, P. M., Martínez, G. A., Herrera, R., and MoyaLeón, M. A., 2010. Changes in cell wall polysaccharides and cell wall degrading enzymes during ripening of Fragaria chiloensis and Fragaria x ananassa fruits. Scientia Horticulturae, 124, 454–462.
  • Foyer, C. H., 2018. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154,134-142.
  • Guo, D. L., Wang, Z. G., Li, Q., Gu, S. C., Zhang, G. H. and Yu, Y. H., 2019. Hydrogen peroxide treatment promotes early ripening of Kyoho grape. Australian Journal of Grape and Wine Research, 25(3), 357-362.
  • Guo, D.L., Wang, Z.G., Pei, M.S., Guo, L. L. and Yu, Y. H., 2020. Transcriptome analysis reveals mechanism of early ripening in Kyoho grape with hydrogen peroxide treatment. BMC Genomics, 21, 784.
  • Hou, B.Z., Chen, X.H. and Shen, Y.Y., 2021. Interactions Between Strawberry ABA Receptor PYR/PYLs and Protein Phosphatase PP2Cs on Basis of Transcriptome and Yeast Two-Hybrid Analyses. Journal of plant growth regulation, 40, 594-602.
  • Jiménez-Bermúdez, S., Redondo-Nevado, J., Muñoz-Blanco, J., Caballero, J. L., López-Aranda, J. M. and Valpuesta, V., 2002. Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiology, 128, 751-759.
  • Koh, T. H., Melton, L. D. and Newman, R. H., 1997. Solis-state CNMR characterization of cell walls of ripening strawberries. Canadian Journal of Botany, 75, 1957-1964.
  • Lacan, D. and Baccou, J.C., 1998. High levels of antioxidant enzymes correlate with delayed senescence in nonnetted muskmelon fruits. Planta, 204, 377-382.
  • Lin, Y. X., Lin, H. T., Chen, Y. H., Wang, H., Lin, M. S., Ritenour, M. A. and Lin, Y., 2020. The role of ROS-induced change of respiratory metabolism in pulp breakdown development of longan fruit during storage. Food Chemistry, 305, 125439.
  • Lin, Y., Lin, H., Wang, H., Lin, M., Chen, Y., Fan, Z., Hung, Y. C. and Lin, Y., 2020. Effects of hydrogen peroxide treatment on pulp breakdown, softening, and cell wall polysaccharide metabolism in fresh longan fruit. Carbohydrate Polymers, 242, 116427.
  • Lin, Y., Lin, Y., Lin, H., Lin, M., Li, H., Yuan, F., Chen, Y. and Xiao, J., 2018. Effects of paper containing 1-MCP postharvest treatment on the disassembly of cell wall polysaccharides and softening in Younai plum fruit during storage. Food Chemistry, 264, 1-8.
  • Liu, T., Ye, X., Li, M., Li, J., Qi, H. and Hu, X., 2020. H2O2 and NO are involved in trehalose-regulated oxidative stress tolerance in cold-stressed tomato plants. Environmental and Experimental Botany, 171, 103961.
  • Livak, K. J., Schmittgen and T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -Delta Delta C(T) Method. Methods, 25(4), 402-408.
  • Lunn, D., Phan, T. D., Tucker, G. A. and Lycett, G. W., 2013. Cell wall composition of tomato fruit changes during development and inhibition of vesicle trafficking is associated with reduced pectin levels and reduced softening. Plant Physiology and Biochemistry, 66, 91-97.
  • Marinho, H.S., Real, C., Cyrne, L., Soares, H. and Antunes, F., 2014. Hydrogen peroxide sensing, signalling and regulation of transcription factors. Redox Biology, 2, 535-562.
  • Méndez-Yañez, A., González, M., Carrasco-Orellana, C., Herrera, R. and Moya-León, M. A., 2020. Isolation of a rhamnogalacturonan lyase expressed during ripening of the Chilean strawberry fruit and its biochemical characterization. Plant Physiology and Biochemistry, 146, 411-419.
  • Nangare, D.D., Singh, Y., Kumar, P. S. and Minhas, P. S., 2016. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agricultural Water Management, 171, 73-79.
  • Paniagua, C., Blanco-Portales, R., Barceló-Muñoz, M., García-Gago, J. A., Waldron, K. W., Quesada, M. A., Muñoz-Blanco, J. and Mercado, J. A., 2016. Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening. Journal of Experimental Botany, 67(3), 619-631.
  • Qin, G., Meng, X., Wang, Q. and Tian, S., 2009. Oxidative Damage of Mitochondrial Proteins Contributes to Fruit Senescence: A Redox Proteomics Analysis. Journal of Proteome Research, 8(5), 2449-2462.
  • Quesada, M. A., Blanco-Portales, R., Posé, S., García-Cago, J. A., Jiménez-Bermúdez, S. and Muñoz-Serrano, A., 2009. Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening. Plant Physiology, 150, 1022-1032.
  • Ren, Y., He J., Liu H., Liu G. and Ren, X., 2016. Nitric Oxide Alleviates Deterioration and Preserves Antioxidant Properties in ‘Tainong’ Mango Fruit During Ripening. Horticulture, Environment, and Biotechnology, 58(1), 27-37.
  • Ribeiro, C. W., Korbes, A. P., Garighan, J. A., Jardim-Messeder, D., Carvalho, F. E. L., Sousa, R. H. V., Caverzan, A., Teixeira, F. K., Silveira, J. A. K. and Pinheiro, M. M., 2017. Rice peroxisomal ascorbate peroxidase knockdown affects ROS signalling and triggers early leaf senescence. Plant Science, 263, 55-65.
  • Santiago-Doménech, N., Jimenez-Bermudez, S., Matas, A. J., Rose, J. K. C., MuñozBlanco, J. and Mercado, J. A., 2008. Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening. Journal of Experimental Botany, 59, 2769-2779.
  • Song, Jun., Campbell, PL., Vinqvist-Tymchuk, M., Fillmore, S., Forney, C., Luo, H. and Zhang, Z., 2020. Proteomic Changes in Antioxidant System in Strawberry During Ripening. Frontiers in Plant Science, 11, 594156.
  • TUIK, 2018. www.tuik.gov.tr. (February 2022)
  • Wakabayashi, K., Chun, J. P. and Huber, D. J., 2000. Extensive solubilization and depolymerization of cell wall polysaccharides during avocado (Persea americana) ripening involves concerted action of polygalacturonase and pectinmethylesterase. Physiologia Plantarum, 108, 345-352.
  • Wang, D., Samsulrizal, N. H., Yan, C., Allcock, N. S., Craigon, J., Blanco-Ulate, B., Ortega-Salazar, I., Marcus, S. E., Bagheri, H. M., Fons, L. P., Fraser, P. D., Foster, T., Fray, R., Knox, J. P. and Seymour, G. B., 2019. Characterization of CRISPR Mutants Targeting Genes Modulating Pectin Degradation in Ripening Tomato. Plant Physiology, 179 (2), 544-55.
  • Xue, C., Guan, S. C.,Chen, J. Q., Wen, C. J., Cai, J. F. and Chen, X., 2020. Genome wide identification and functional characterization of strawberry pectin methylesterases related to fruit softening”, BMC Plant Biology, 20, 13.

Hidrojen Peroksit Uygulamasının Hasat Sonrası Depolama Döneminde Çilek (Fragaria ananassa, var. Festival) Meyvelerinin Fizyo-kimyasal Özellikleri Üzerine Etkileri

Year 2022, , 315 - 323, 30.04.2022
https://doi.org/10.35414/akufemubid.1003264

Abstract

Hücre duvarı polisakkaritlerinin parçalanması, hasat sonrası meyve dokusunun yumuşamasında önemli bir rol oynamaktadır. Olgunlaşma ile birlikte Reaktif oksijen türlerinin (ROS) akümülasyonu farklı çalışmalarda gösterilmiştir. Bu çalışmada bir ROS görevi gören hidrojen peroksitin (H2O2) +4 oC'de depolanması sırasında çilek meyvelerinin fiziksel, biyokimyasal ve moleküler özellikleri ile polisakkarit içeriği üzerindeki rolü araştırılmıştır. Ticari olgunluk aşamasında hasat edilen çilekler farklı konsantrasyonlardaki H2O2 solüsyonlarında (0, 100 ve 500 mM) 30 dakika bekletildikten sonra +4 oC'de 8 gün saklanmıştır. Elde edilen veriler, 100 mM H2O2 uygulamasının meyve sertliğini önemli ölçüde artırdığını, suda çözünür pektini ve hücre duvarı ile ilişkili poligalakturonaz (PG) ve pektat liyaz (PL) enzimlerini kodlayan genlerin ekspresyonunu azalttığını göstermiştir. Bu sonuçlar, hasat sonrası depolama koşullarında çileğin genel morfolojik ve biyokimyasal kalitesinin 100 mM H2O2 uygulaması ile etkili bir şekilde korunabileceğini göstermiştir.

References

  • AL-Saikhan, M.S. and Shalaby, T.A., 2019. Effect of hydrogen peroxide (H2O2) treatment on physicochemical characteristics of tomato fruits during postharvest storage. Australian Journal of Crops Science, 13(05), 798-802. Bayoumi, Y. A., 2008. Improvement of postharvest keeping quality of white pepper fruits (Capsicum annuum, L.) by hydrogen peroxide treatment under storage conditions. Acta Biologica Szegediensis, 52(1), 7-15. Brummel, D. A. and Harpster, M. H., 2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 47, 311-339. Čamagajevac, I. Š., Maronić, D. Š., Pfeiffer, T. Ž., Bek, N. and Lončarić, Z., 2019. Nitric Oxide and Hydrogen Peroxide in Plant Response to Biotic Stress. In: Gupta D., Palma J., Corpas F. (eds) Nitric Oxide and Hydrogen Peroxide Signalling in Higher Plants. Springer Nature Switzerland, 221-234 Chen, Y. H., Hung, Y. C., Chen, M. Y., Lin, M. S. and Lin, H. T., 2019. Enhanced storability of blueberries by acidic electrolyzed oxidizing water application may be mediated by regulating ROS metabolism. Food Chemistry, 270, 229-235.
  • FAO (2020) http://www.fao.org/faostat/en/#data/QC (February 2022)
  • Felizini, E., Lichter, A., Smilanik, J.L. and Ippolito, A., 2016. Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biology and Technology, 122, 53-69.
  • Figueroa, C. R., Pimentel, P., Gaete-Eastman, C., Moya, M., Herrera, R. and Caligari, P. D. S., 2008. Softening rate of the Chilean strawberry (Fragaria chiloensis) fruit reflects the expression of polygalacturonase and pectate lyase genes. Postharvest Biology and Technology, 49, 210-220.
  • Figueroa, C. R., Rosli, H. G., Civello, P. M., Martínez, G. A., Herrera, R., and MoyaLeón, M. A., 2010. Changes in cell wall polysaccharides and cell wall degrading enzymes during ripening of Fragaria chiloensis and Fragaria x ananassa fruits. Scientia Horticulturae, 124, 454–462.
  • Foyer, C. H., 2018. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154,134-142.
  • Guo, D. L., Wang, Z. G., Li, Q., Gu, S. C., Zhang, G. H. and Yu, Y. H., 2019. Hydrogen peroxide treatment promotes early ripening of Kyoho grape. Australian Journal of Grape and Wine Research, 25(3), 357-362.
  • Guo, D.L., Wang, Z.G., Pei, M.S., Guo, L. L. and Yu, Y. H., 2020. Transcriptome analysis reveals mechanism of early ripening in Kyoho grape with hydrogen peroxide treatment. BMC Genomics, 21, 784.
  • Hou, B.Z., Chen, X.H. and Shen, Y.Y., 2021. Interactions Between Strawberry ABA Receptor PYR/PYLs and Protein Phosphatase PP2Cs on Basis of Transcriptome and Yeast Two-Hybrid Analyses. Journal of plant growth regulation, 40, 594-602.
  • Jiménez-Bermúdez, S., Redondo-Nevado, J., Muñoz-Blanco, J., Caballero, J. L., López-Aranda, J. M. and Valpuesta, V., 2002. Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiology, 128, 751-759.
  • Koh, T. H., Melton, L. D. and Newman, R. H., 1997. Solis-state CNMR characterization of cell walls of ripening strawberries. Canadian Journal of Botany, 75, 1957-1964.
  • Lacan, D. and Baccou, J.C., 1998. High levels of antioxidant enzymes correlate with delayed senescence in nonnetted muskmelon fruits. Planta, 204, 377-382.
  • Lin, Y. X., Lin, H. T., Chen, Y. H., Wang, H., Lin, M. S., Ritenour, M. A. and Lin, Y., 2020. The role of ROS-induced change of respiratory metabolism in pulp breakdown development of longan fruit during storage. Food Chemistry, 305, 125439.
  • Lin, Y., Lin, H., Wang, H., Lin, M., Chen, Y., Fan, Z., Hung, Y. C. and Lin, Y., 2020. Effects of hydrogen peroxide treatment on pulp breakdown, softening, and cell wall polysaccharide metabolism in fresh longan fruit. Carbohydrate Polymers, 242, 116427.
  • Lin, Y., Lin, Y., Lin, H., Lin, M., Li, H., Yuan, F., Chen, Y. and Xiao, J., 2018. Effects of paper containing 1-MCP postharvest treatment on the disassembly of cell wall polysaccharides and softening in Younai plum fruit during storage. Food Chemistry, 264, 1-8.
  • Liu, T., Ye, X., Li, M., Li, J., Qi, H. and Hu, X., 2020. H2O2 and NO are involved in trehalose-regulated oxidative stress tolerance in cold-stressed tomato plants. Environmental and Experimental Botany, 171, 103961.
  • Livak, K. J., Schmittgen and T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -Delta Delta C(T) Method. Methods, 25(4), 402-408.
  • Lunn, D., Phan, T. D., Tucker, G. A. and Lycett, G. W., 2013. Cell wall composition of tomato fruit changes during development and inhibition of vesicle trafficking is associated with reduced pectin levels and reduced softening. Plant Physiology and Biochemistry, 66, 91-97.
  • Marinho, H.S., Real, C., Cyrne, L., Soares, H. and Antunes, F., 2014. Hydrogen peroxide sensing, signalling and regulation of transcription factors. Redox Biology, 2, 535-562.
  • Méndez-Yañez, A., González, M., Carrasco-Orellana, C., Herrera, R. and Moya-León, M. A., 2020. Isolation of a rhamnogalacturonan lyase expressed during ripening of the Chilean strawberry fruit and its biochemical characterization. Plant Physiology and Biochemistry, 146, 411-419.
  • Nangare, D.D., Singh, Y., Kumar, P. S. and Minhas, P. S., 2016. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agricultural Water Management, 171, 73-79.
  • Paniagua, C., Blanco-Portales, R., Barceló-Muñoz, M., García-Gago, J. A., Waldron, K. W., Quesada, M. A., Muñoz-Blanco, J. and Mercado, J. A., 2016. Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening. Journal of Experimental Botany, 67(3), 619-631.
  • Qin, G., Meng, X., Wang, Q. and Tian, S., 2009. Oxidative Damage of Mitochondrial Proteins Contributes to Fruit Senescence: A Redox Proteomics Analysis. Journal of Proteome Research, 8(5), 2449-2462.
  • Quesada, M. A., Blanco-Portales, R., Posé, S., García-Cago, J. A., Jiménez-Bermúdez, S. and Muñoz-Serrano, A., 2009. Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening. Plant Physiology, 150, 1022-1032.
  • Ren, Y., He J., Liu H., Liu G. and Ren, X., 2016. Nitric Oxide Alleviates Deterioration and Preserves Antioxidant Properties in ‘Tainong’ Mango Fruit During Ripening. Horticulture, Environment, and Biotechnology, 58(1), 27-37.
  • Ribeiro, C. W., Korbes, A. P., Garighan, J. A., Jardim-Messeder, D., Carvalho, F. E. L., Sousa, R. H. V., Caverzan, A., Teixeira, F. K., Silveira, J. A. K. and Pinheiro, M. M., 2017. Rice peroxisomal ascorbate peroxidase knockdown affects ROS signalling and triggers early leaf senescence. Plant Science, 263, 55-65.
  • Santiago-Doménech, N., Jimenez-Bermudez, S., Matas, A. J., Rose, J. K. C., MuñozBlanco, J. and Mercado, J. A., 2008. Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening. Journal of Experimental Botany, 59, 2769-2779.
  • Song, Jun., Campbell, PL., Vinqvist-Tymchuk, M., Fillmore, S., Forney, C., Luo, H. and Zhang, Z., 2020. Proteomic Changes in Antioxidant System in Strawberry During Ripening. Frontiers in Plant Science, 11, 594156.
  • TUIK, 2018. www.tuik.gov.tr. (February 2022)
  • Wakabayashi, K., Chun, J. P. and Huber, D. J., 2000. Extensive solubilization and depolymerization of cell wall polysaccharides during avocado (Persea americana) ripening involves concerted action of polygalacturonase and pectinmethylesterase. Physiologia Plantarum, 108, 345-352.
  • Wang, D., Samsulrizal, N. H., Yan, C., Allcock, N. S., Craigon, J., Blanco-Ulate, B., Ortega-Salazar, I., Marcus, S. E., Bagheri, H. M., Fons, L. P., Fraser, P. D., Foster, T., Fray, R., Knox, J. P. and Seymour, G. B., 2019. Characterization of CRISPR Mutants Targeting Genes Modulating Pectin Degradation in Ripening Tomato. Plant Physiology, 179 (2), 544-55.
  • Xue, C., Guan, S. C.,Chen, J. Q., Wen, C. J., Cai, J. F. and Chen, X., 2020. Genome wide identification and functional characterization of strawberry pectin methylesterases related to fruit softening”, BMC Plant Biology, 20, 13.
There are 32 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Selman Uluışık 0000-0003-0790-6705

Publication Date April 30, 2022
Submission Date October 1, 2021
Published in Issue Year 2022

Cite

APA Uluışık, S. (2022). The Effects of Hydrogen Peroxide Application on Physio-chemical Properties of Strawberry (Fragaria ananassa, var. Festival) Fruits in Postharvest Storage Period. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(2), 315-323. https://doi.org/10.35414/akufemubid.1003264
AMA Uluışık S. The Effects of Hydrogen Peroxide Application on Physio-chemical Properties of Strawberry (Fragaria ananassa, var. Festival) Fruits in Postharvest Storage Period. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2022;22(2):315-323. doi:10.35414/akufemubid.1003264
Chicago Uluışık, Selman. “The Effects of Hydrogen Peroxide Application on Physio-Chemical Properties of Strawberry (Fragaria Ananassa, Var. Festival) Fruits in Postharvest Storage Period”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 2 (April 2022): 315-23. https://doi.org/10.35414/akufemubid.1003264.
EndNote Uluışık S (April 1, 2022) The Effects of Hydrogen Peroxide Application on Physio-chemical Properties of Strawberry (Fragaria ananassa, var. Festival) Fruits in Postharvest Storage Period. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 2 315–323.
IEEE S. Uluışık, “The Effects of Hydrogen Peroxide Application on Physio-chemical Properties of Strawberry (Fragaria ananassa, var. Festival) Fruits in Postharvest Storage Period”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 2, pp. 315–323, 2022, doi: 10.35414/akufemubid.1003264.
ISNAD Uluışık, Selman. “The Effects of Hydrogen Peroxide Application on Physio-Chemical Properties of Strawberry (Fragaria Ananassa, Var. Festival) Fruits in Postharvest Storage Period”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/2 (April 2022), 315-323. https://doi.org/10.35414/akufemubid.1003264.
JAMA Uluışık S. The Effects of Hydrogen Peroxide Application on Physio-chemical Properties of Strawberry (Fragaria ananassa, var. Festival) Fruits in Postharvest Storage Period. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:315–323.
MLA Uluışık, Selman. “The Effects of Hydrogen Peroxide Application on Physio-Chemical Properties of Strawberry (Fragaria Ananassa, Var. Festival) Fruits in Postharvest Storage Period”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 2, 2022, pp. 315-23, doi:10.35414/akufemubid.1003264.
Vancouver Uluışık S. The Effects of Hydrogen Peroxide Application on Physio-chemical Properties of Strawberry (Fragaria ananassa, var. Festival) Fruits in Postharvest Storage Period. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(2):315-23.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.