Research Article
BibTex RIS Cite

Meme Kanseri (MCF-7) Hücrelerinde Krosinin İnflamasyon ve Oksidatif Stres Aracılı Apoptoza Etkileri

Year 2021, , 1295 - 1305, 31.12.2021
https://doi.org/10.35414/akufemubid.1025594

Abstract

Krosin, safran (Crocus sativus L.) bitkisinin çiçek kısmındaki stigmalarının kurutulması ile elde edilen karotenoid yapılı bir bileşiktir. Sunulan çalışmada krosinin insan meme adenokarsinomu (MCF-7) hücre hattında sitotoksisite düzeyleri ile oksidatif stress, inflamasyon ve apoptoza etkileri belirlendi. MCF-7 hücrelerinde krosinin sitotoksisitesi, MTT (3-4,5-dimetil-tiyazolil-2,5-difeniltetrazolyum bromid) testi ile analiz edildi. Krosinin günlük maruziyette MCF-7 hücrelerindeki LD50 dozu 1611 µg/mL, LD0 dozu ise 20 µg/mL olarak belirlendi. MCF-7 hücrelerinde krosinin antioksidan ve inflamatuvar sisteme etkisini belirleyebilmek amacıyla dört farklı deneysel grup oluşturuldu. Deney gruplarından elde edilen hücre lizatlarında total antioksidan statü (TAS), total oksidan statü (TOS) ve oksidatif stres indeksi (OSI), tümör nekrozis faktör (TNF) α, interferon (IFN) γ, ınterlöykin 1 (IL1) β düzeyleri analiz edildi. Krosinin apoptoza etkilerini belirlemek amacıyla ise RT-PCR yöntemiyle apoptotik/antiapoptotik genlere (p53, Bcl-2, TRAIL1, TRAIL2, Bax) ait mRNA ekspresyon düzeyleri analiz edildi. Elde edilen veriler değerlendirildiğinde, krosinin MCF-7 hücrelerinde LD0 ve LD50 dozlarında proinflamatuvar stokin düzeylerini etkilemeksizin oksidatif stresi artırarak apoptozu uyardığı tespit edildi. Hücre kültürü çalışmaları ile belirlenen, krosinin MCF-7 hücrelerinde antikanserojen etkinliğinin, deney hayvanlarında oluşturulacak modellemeler ile doğrulanması, krosinin kanser tedavisinde olası yararlarını açıklamak adına yararlı olabilir.

Supporting Institution

Afyon Kocatepe Üniversitesi

Project Number

16.KARİYER.160

Thanks

Sunulan bu çalışma Afyon Kocatepe Ünüversitesi Bilimsel Araştırma Projeleri Komisyonu tarafından (Proje no: 16.KARİYER.160) desteklenmiştir. Ayrıca sunulan çalışmadaki bulguların bir kısmı 23-25 Ağustos 2017 tarihlerinde Roma-İtalya’da düzenlenen “IV. International Multidisciplinary Congress of Eurasia (IMCOFE)” kongresinde sözlü bildiri şeklinde sunulmuş ve özet bildiri şeklinde kongre kitabında yayınlanmıştır.

References

  • Adali, F., Gonul, Y., Aldemir, M., Hazman, O., Ahsen, A., Bozkurt, M.F., Sen, O.G., Keles, I., Keles, H., 2016. Investigation of the Effect of Krosin Pre-Treatment on Renal Injury Induced by Infrarenal Aortic Occlusion. Journal of Surgical Research, 203,145-53.
  • Assimopoulou, A.N., Sinakos, Z., Papageorgiou, V.P., 2005. Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytotherapy Research, 19, 997 – 1000.
  • Bakshi, H.A., Hakkim, F.L., Sam, S., 2016. Molecular Mechanism of Crocin Induced Caspase Mediated MCF-7 Cell Death: In Vivo Toxicity Profiling and Ex Vivo Macrophage Activation. Pacific Organization for Cancer Prevention,17,1499-506.
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 7, 248-54.
  • Chryssanthi, D. G., Fotini N. L., Gregoris, I., Adamantia, P., Nikos, K. K., Paul, C., 2007. Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Research, 27, 357–362.
  • Ersin, G., Çelik, S., Ulasli, S.S., Özyürek, A., Hazman, Ö., Günay, S., Özdemir, M., Ünlü, M., 2016. Comparison of the Anti-inflammatory Effects of Proanthocyanidin, Quercetin, and Damnacanthal on Benzo(a)pyrene Exposed A549 Alveolar Cell Line, Inflammation, 39, 744–751.
  • Escribano, J., Alonso, G.L., Coca-Prados, M., Fernandez, J.A., 1996. Krosin, safranal and picrokrosin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Letters, 100, 23–30.
  • Fanayi, A.R., Changizi, V., Safa, M., 2016. Effect of krosin and doxorubicin/radiation on the breast cancer cell line, Michigan Cancer Foundation, Bioscience biotechnology research communications, 9, 428–434.
  • Garcia-Olmo, D.C., Riese, H.H., Escribano, J., Ontanon, J., Fernandez, J.A., Atienzar, M., Garcia-Olmo, D., 1999. Effects of longterm treatment of colon adenocarcinoma with crosin, a carotenoid from saffron (Crocus sativus L.): an experimental study in the rat. Nutrition and Cancer, 35, 120–126.
  • Hazman, Ö., Aksoy, L., Büyükben, A., 2016. Effects of crosin on experimental obesity and type-2 diabetes. Turkish Journal of Medical Sciences, 46, 1593-1602.
  • Hazman, Ö., Bozkurt, M.F., Fidan, A.F., Uysal, F.E., Çelik, S., 2018. The Effect of Boric Acid and Borax on Oxidative Stress, Inflammation, ER Stress and Apoptosis in Cisplatin Toxication and Nephrotoxicity Developing as a Result of Toxication. Inflammation, 41, 1032-1048.
  • Hazman, Ö., Bozkurt, M.F., 2015.Anti-inflammatory and Antioxidative Activities of Safranal in the reduction of Renal Dysfunction and Damage that Occur in Diabetic Nephropathy. Inflammation, 38, 1537-45.
  • Hazman, Ö., Ovalı, S., 2015. Investigation of the Anti-Inflammatory Effects of Safranal on High-Fat Diet and Multiple Low-Dose Streptozotocin Induced Type 2 Diabetes Rat Model, Inflammation, 38, 1012-9.
  • Hazman, Ö., Sarıova, A., Bozkurt, M.F., Ciğerci, İ.H., 2021. The anticarcinogen activity of β-arbutin on MCF-7 cells: Stimulation of apoptosis through estrogen receptor-α signal pathway, inflammation and genotoxicity. Molecular and Cellular Biochemistry, 476, 349-360.
  • Hire, R.R., Srivastava, S., Davis, M.B., Kumar Konreddy, A., Panda, D., 2017. Antiproliferative Activity of Crocin Involves Targeting of Microtubules in Breast Cancer Cells. Scientific Reports, 24, 44984.
  • Hoshyar, R., Mollaei, H., 2017. A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, krosin. The Journal of Pharmacy and Pharmacology, 69, 1419-1427.
  • Kianbakht, S., Hajiaghaee, R., 2011. Anti-hyperglycemic Effects of Saffron and its Active Constituents, Krosin and Safranal, in Alloxan-Induced Diabetic Rats, Journal of Medicinal Plants, 39, 82-89.
  • Lee, I.A., Lee, J.H., Baek, N.I., Kim, D.H., 2005.Antihyperlipidemic effect of crosin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biological and Pharmaceutical Bulletin, 28, 2106–2110.
  • Liakopoulou-Kyriakides, M., Skubas, AI., 1990. Characterization of the platelet aggregation inducer and inhibitor isolated from Crocus sativus, Biochemistry international, 22,103-10.
  • Lu, P., Lin, H., Gu, Y., Li, L., Guo, H., Wang, F., Qiu, X., 2015. Antitumor effects of crosin on human breast cancer cells. International Journal of Clinical and Experimental Medicine, 8, 20316-22.
  • Nasimian, A., Farzaneh, P., Tamanoi, F., Bathaie, S.Z., 2020. Cytosolic and mitochondrial ROS production resulted in apoptosis induction in breast cancer cells treated with Crocin: The role of FOXO3a, PTEN and AKT signaling. Biochemical pharmacology, 177, 113999.
  • Ozkececi, Z.T., Gonul Y., Yuksel Y., Karavelioglu A., Tunay K., Gulsari Y., Cartilli O., Hazman O., Bal A. 2016. Investigation of the effect of safranal and crocin pre-treatment on hepatic injury induced by infrarenal aortic occlusion. Biomedicine and Pharmacotherapy, 83, 160-166.
  • Pfaffl, M.W., 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids research, 29, e45.
  • Rajaei, Z., Hadjzadeh, M.A., Nemati, H., Hosseini, M., Ahmadi, M., Shafiee, S., 2013. Antihyperglycemic and antioxidant activity of crosin in streptozotocin-induced diabetic rats. Journal of Medicinal Food, 16, 206-10.
  • Shirali, S., Bathaine, S., Nakhjavani, M., 2013. Effect of crosin on the insülin Resistance and lipid profile of streptozotocin-induced diabetic rats. Phytotherapy Research, 27, 1042- 1047.
  • Soeda, S., Ochiai, T., Paopong, L., Tanaka, H., Shoyama, Y., Shimeno, H., 2001. Crosin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells. Life Sciences, 69, 2887-98.
  • Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F., 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
  • Ulasli, S.S., Celik, S., Gunay, E., Ozdemir, M., Hazman, O., Ozyurek, A., Koyuncu, T., Unlu, M., 2013. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pacific Journal of Cancer Prevention, 14, 6159-64.

Effects of Crocin on Inflammation and Oxidative Stress Mediated Apoptosis in Breast Cancer (MCF-7) Cells

Year 2021, , 1295 - 1305, 31.12.2021
https://doi.org/10.35414/akufemubid.1025594

Abstract

Crocin is a carotenoid compound obtained by drying the stigmas of the flower part of the saffron (Crocus sativus L.) plant. The present study determined the effects of crocin on cytotoxicity, oxidative stress, inflammation, and apoptosis in human breast adenocarcinoma (MCF-7) cell lines. The cytotoxicity of crocin in MCF-7 cells was analyzed by the MTT (3-4,5-dimethyl-thiazolyl-2,5-diphenyltetrazolium bromide) assay. The LD50 dose of crocin in MCF-7 cells at daily exposure was determined as 1611 µg/mL, and the LD0 dose was determined as 20 µg/mL. In order to determine the effect of crocin on the antioxidant and inflammatory system in MCF-7 cells, four different experimental groups was formed. Total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), tumor necrosis factor (TNF) α, interferon (IFN) γ, interleukin 1 (IL1) β levels in cell lysates obtained from experimental groups were analyzed. In order to determine the effects of crocin on apoptosis, mRNA expression levels of apoptotic/antiapoptotic genes (p53, Bcl-2, TRAIL1, TRAIL2, Bax) were analyzed by the RT-PCR method. When the obtained data were evaluated, it was determined that crocin stimulated apoptosis in MCF-7 cells by increasing oxidative stress without affecting proinflammatory stock levels at LD0 and LD50 doses. Confirmation of the anticarcinogenic activity of crocin in MCF-7 cells, determined by cell culture studies, with models to be created in experimental animals may be helpful to explain the possible benefits of crocin in cancer treatment.

Project Number

16.KARİYER.160

References

  • Adali, F., Gonul, Y., Aldemir, M., Hazman, O., Ahsen, A., Bozkurt, M.F., Sen, O.G., Keles, I., Keles, H., 2016. Investigation of the Effect of Krosin Pre-Treatment on Renal Injury Induced by Infrarenal Aortic Occlusion. Journal of Surgical Research, 203,145-53.
  • Assimopoulou, A.N., Sinakos, Z., Papageorgiou, V.P., 2005. Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytotherapy Research, 19, 997 – 1000.
  • Bakshi, H.A., Hakkim, F.L., Sam, S., 2016. Molecular Mechanism of Crocin Induced Caspase Mediated MCF-7 Cell Death: In Vivo Toxicity Profiling and Ex Vivo Macrophage Activation. Pacific Organization for Cancer Prevention,17,1499-506.
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 7, 248-54.
  • Chryssanthi, D. G., Fotini N. L., Gregoris, I., Adamantia, P., Nikos, K. K., Paul, C., 2007. Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Research, 27, 357–362.
  • Ersin, G., Çelik, S., Ulasli, S.S., Özyürek, A., Hazman, Ö., Günay, S., Özdemir, M., Ünlü, M., 2016. Comparison of the Anti-inflammatory Effects of Proanthocyanidin, Quercetin, and Damnacanthal on Benzo(a)pyrene Exposed A549 Alveolar Cell Line, Inflammation, 39, 744–751.
  • Escribano, J., Alonso, G.L., Coca-Prados, M., Fernandez, J.A., 1996. Krosin, safranal and picrokrosin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Letters, 100, 23–30.
  • Fanayi, A.R., Changizi, V., Safa, M., 2016. Effect of krosin and doxorubicin/radiation on the breast cancer cell line, Michigan Cancer Foundation, Bioscience biotechnology research communications, 9, 428–434.
  • Garcia-Olmo, D.C., Riese, H.H., Escribano, J., Ontanon, J., Fernandez, J.A., Atienzar, M., Garcia-Olmo, D., 1999. Effects of longterm treatment of colon adenocarcinoma with crosin, a carotenoid from saffron (Crocus sativus L.): an experimental study in the rat. Nutrition and Cancer, 35, 120–126.
  • Hazman, Ö., Aksoy, L., Büyükben, A., 2016. Effects of crosin on experimental obesity and type-2 diabetes. Turkish Journal of Medical Sciences, 46, 1593-1602.
  • Hazman, Ö., Bozkurt, M.F., Fidan, A.F., Uysal, F.E., Çelik, S., 2018. The Effect of Boric Acid and Borax on Oxidative Stress, Inflammation, ER Stress and Apoptosis in Cisplatin Toxication and Nephrotoxicity Developing as a Result of Toxication. Inflammation, 41, 1032-1048.
  • Hazman, Ö., Bozkurt, M.F., 2015.Anti-inflammatory and Antioxidative Activities of Safranal in the reduction of Renal Dysfunction and Damage that Occur in Diabetic Nephropathy. Inflammation, 38, 1537-45.
  • Hazman, Ö., Ovalı, S., 2015. Investigation of the Anti-Inflammatory Effects of Safranal on High-Fat Diet and Multiple Low-Dose Streptozotocin Induced Type 2 Diabetes Rat Model, Inflammation, 38, 1012-9.
  • Hazman, Ö., Sarıova, A., Bozkurt, M.F., Ciğerci, İ.H., 2021. The anticarcinogen activity of β-arbutin on MCF-7 cells: Stimulation of apoptosis through estrogen receptor-α signal pathway, inflammation and genotoxicity. Molecular and Cellular Biochemistry, 476, 349-360.
  • Hire, R.R., Srivastava, S., Davis, M.B., Kumar Konreddy, A., Panda, D., 2017. Antiproliferative Activity of Crocin Involves Targeting of Microtubules in Breast Cancer Cells. Scientific Reports, 24, 44984.
  • Hoshyar, R., Mollaei, H., 2017. A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, krosin. The Journal of Pharmacy and Pharmacology, 69, 1419-1427.
  • Kianbakht, S., Hajiaghaee, R., 2011. Anti-hyperglycemic Effects of Saffron and its Active Constituents, Krosin and Safranal, in Alloxan-Induced Diabetic Rats, Journal of Medicinal Plants, 39, 82-89.
  • Lee, I.A., Lee, J.H., Baek, N.I., Kim, D.H., 2005.Antihyperlipidemic effect of crosin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biological and Pharmaceutical Bulletin, 28, 2106–2110.
  • Liakopoulou-Kyriakides, M., Skubas, AI., 1990. Characterization of the platelet aggregation inducer and inhibitor isolated from Crocus sativus, Biochemistry international, 22,103-10.
  • Lu, P., Lin, H., Gu, Y., Li, L., Guo, H., Wang, F., Qiu, X., 2015. Antitumor effects of crosin on human breast cancer cells. International Journal of Clinical and Experimental Medicine, 8, 20316-22.
  • Nasimian, A., Farzaneh, P., Tamanoi, F., Bathaie, S.Z., 2020. Cytosolic and mitochondrial ROS production resulted in apoptosis induction in breast cancer cells treated with Crocin: The role of FOXO3a, PTEN and AKT signaling. Biochemical pharmacology, 177, 113999.
  • Ozkececi, Z.T., Gonul Y., Yuksel Y., Karavelioglu A., Tunay K., Gulsari Y., Cartilli O., Hazman O., Bal A. 2016. Investigation of the effect of safranal and crocin pre-treatment on hepatic injury induced by infrarenal aortic occlusion. Biomedicine and Pharmacotherapy, 83, 160-166.
  • Pfaffl, M.W., 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids research, 29, e45.
  • Rajaei, Z., Hadjzadeh, M.A., Nemati, H., Hosseini, M., Ahmadi, M., Shafiee, S., 2013. Antihyperglycemic and antioxidant activity of crosin in streptozotocin-induced diabetic rats. Journal of Medicinal Food, 16, 206-10.
  • Shirali, S., Bathaine, S., Nakhjavani, M., 2013. Effect of crosin on the insülin Resistance and lipid profile of streptozotocin-induced diabetic rats. Phytotherapy Research, 27, 1042- 1047.
  • Soeda, S., Ochiai, T., Paopong, L., Tanaka, H., Shoyama, Y., Shimeno, H., 2001. Crosin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells. Life Sciences, 69, 2887-98.
  • Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F., 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
  • Ulasli, S.S., Celik, S., Gunay, E., Ozdemir, M., Hazman, O., Ozyurek, A., Koyuncu, T., Unlu, M., 2013. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pacific Journal of Cancer Prevention, 14, 6159-64.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Articles
Authors

Ömer Hazman 0000-0002-2702-6847

Project Number 16.KARİYER.160
Publication Date December 31, 2021
Submission Date November 18, 2021
Published in Issue Year 2021

Cite

APA Hazman, Ö. (2021). Meme Kanseri (MCF-7) Hücrelerinde Krosinin İnflamasyon ve Oksidatif Stres Aracılı Apoptoza Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(6), 1295-1305. https://doi.org/10.35414/akufemubid.1025594
AMA Hazman Ö. Meme Kanseri (MCF-7) Hücrelerinde Krosinin İnflamasyon ve Oksidatif Stres Aracılı Apoptoza Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2021;21(6):1295-1305. doi:10.35414/akufemubid.1025594
Chicago Hazman, Ömer. “Meme Kanseri (MCF-7) Hücrelerinde Krosinin İnflamasyon Ve Oksidatif Stres Aracılı Apoptoza Etkileri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, no. 6 (December 2021): 1295-1305. https://doi.org/10.35414/akufemubid.1025594.
EndNote Hazman Ö (December 1, 2021) Meme Kanseri (MCF-7) Hücrelerinde Krosinin İnflamasyon ve Oksidatif Stres Aracılı Apoptoza Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 6 1295–1305.
IEEE Ö. Hazman, “Meme Kanseri (MCF-7) Hücrelerinde Krosinin İnflamasyon ve Oksidatif Stres Aracılı Apoptoza Etkileri”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 6, pp. 1295–1305, 2021, doi: 10.35414/akufemubid.1025594.
ISNAD Hazman, Ömer. “Meme Kanseri (MCF-7) Hücrelerinde Krosinin İnflamasyon Ve Oksidatif Stres Aracılı Apoptoza Etkileri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/6 (December 2021), 1295-1305. https://doi.org/10.35414/akufemubid.1025594.
JAMA Hazman Ö. Meme Kanseri (MCF-7) Hücrelerinde Krosinin İnflamasyon ve Oksidatif Stres Aracılı Apoptoza Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:1295–1305.
MLA Hazman, Ömer. “Meme Kanseri (MCF-7) Hücrelerinde Krosinin İnflamasyon Ve Oksidatif Stres Aracılı Apoptoza Etkileri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 6, 2021, pp. 1295-0, doi:10.35414/akufemubid.1025594.
Vancouver Hazman Ö. Meme Kanseri (MCF-7) Hücrelerinde Krosinin İnflamasyon ve Oksidatif Stres Aracılı Apoptoza Etkileri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(6):1295-30.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.