Research Article
BibTex RIS Cite

GNSS Tekniği ile Düşey Yöndeki Deformasyonların Araştırılması

Year 2022, , 615 - 625, 30.06.2022
https://doi.org/10.35414/akufemubid.1066483

Abstract

Yerkabuğunda ve mühendislik yapılarında deformasyonların izlenmesi ve analizi jeodezinin önemli konuları arasında yer almaktadır. Deformasyonların izlenmesi amacıyla genel olarak referans ve obje noktalarından oluşan bir jeodezik ağ oluşturulur. Ağ noktalarındaki hareketler analiz edilerek deformasyon araştırması yapılır. Bu hareketlerin belirlenmesine yönelik ölçmeler klasik teknikler ile yapılabileceği gibi GNSS teknikleriyle de yapılabilmektedir. Statik konum belirleme yöntemi, bu tür hassas jeodezik uygulamalarda yaygın olarak kullanılan bir yöntemdir. Bu çalışmada; GNSS tekniğinin düşey yönlü deformasyonları belirleyebilme kapasitesi araştırılmıştır. Bu amaçla, Selçuk Üniversitesi Kampüs alanında bir mikro jeodezik ağ tasarlanmıştır. Tasarlanan ağda obje noktası üzerine sanal deformasyonlar oluşturmaya yarayan bir düzenek yerleştirilmiş ve düşey yönde sanal deformasyonlar meydana getirilerek periyot ölçüleri gerçekleştirilmiştir. Periyot ölçüleri Bernese v5.2 bilimsel GNSS yazılımı ile değerlendirilmiş, GNSS ağlarında deformasyon analizi gerçekleştirmek amacıyla geliştirilen yazılım kullanılarak İteratif Ağırlıklı Benzerlik Dönüşümü Yöntemiyle analiz edilmiş ve belirlenen deformasyonlar ölçü günlerindeki iyonosferik aktiviteler de dikkate alınarak sanal deformasyon değeriyle kıyaslanmıştır. Analizler sonucunda sanal deformasyon değeriyle uyuşumlu vektörel deformasyon büyüklükleri elde edilmiş ve koordinat bileşenleri yönündeki hareket büyüklüklerinin de düzenek üzerinde verilen sanal deformasyon miktarıyla uyuşumlu olduğu görülmüştür.

References

  • Amiri-Simkooei, A. R., Alaei-Tabatabaei, S. M., Zangeneh-Nejad, F. and Voosoghi, B., 2017, Stability Analysis of Deformation-Monitoring Network Points Using Simultaneous Observation Adjustment of Two Epochs, Journal of Surveying Engineering, 143, 1-12.
  • Barzaghi, R., Cazzaniga, N. E., De Gaetani, C. I. and Pinto, L., Tornatore, V., 2018, Estimating and Comparing Dam Deformation Using Classical and GNSS Techniques, Sensors, 18, 1-11.
  • Chen, Y. Q., 1983, Analysis of deformation surveys – a generalized method. Technical Report no. 94, Dept. of Surveying Engineering, University of New Brunswick, 122-160.
  • Chen, Y.Q., Chrzanowski, A. and Secord, J.M., 1990, A strategy for the Analysis of the Stability of Reference Points in Deformation Surveys, Cism Journal ACSGS, 44, 141-149.
  • Chrzanowski, A., Chen, Y. Q. and Secord, J. M., 1986, Report of the adhoc committee on the Analysis of Deformation Surveys, Proceedings of the FIG XVIII International Congress, Toronto, 6, 165-185.
  • Dawidowicz, K. and Krzan, G., 2014, Coordinate Estimation Accuracy of Static Precise Point Positioning Using on-line PPP Service, a Case Study, Acta Geodetica Geophyica, 49, 37–55.
  • Dogru, A., Gorgun, E. Aktug, B. and Ozener, H., 2018, Seismic hazard assessment of the central North Anatolian Fault (Turkey) from GPS derived strain rates and b-values, Geomatics, Natural Hazards and Risk, 9, 356-367.
  • Du, Y., Huang, G., Zhang, Q., Gao, Y. and Gao., Y., 2020, Asynchronous RTK Method for Detecting the Stability of the Reference Station in GNSS Deformation Monitoring, Sensors, 20, 1-12.
  • Gokalp, E. and Tasci, L., 2009, Deformation Monitoring by GPS At Embankment Dams and Deformation Analysis, Survey Review, 41, 86-102.
  • Hofman-Wellenhof, B., Lichtenegger, H. and Wasle, E., 2008, GNSS - Global Navigation Satellite Systems, Austria, Springer, 183-185.
  • Konakoglu, B. and Gokalp, E., 2018, Deformation Measurements and Analysis with Robust Methods: A Case Study, Deriner Dam. Turkish Journal of Science & Technology, 13, 99-103.
  • Lim, M. C., Setan, H., Othman, R. and Chong A K., 2012, Deformation detection for ISKANDARnet, Survey Review, 44, 198-207.
  • Nowel, K., 2016, Investigating efficacy of robust M-estimation of deformation from observation differences, Survey Review, 48, 21-30.
  • Nowel, K. and Kaminski, W., 2014, Robust Estimation of Deformation from Observation Differences for Free Control Networks, Journal of Geodesy, 88, 749-764.
  • Setan, H. and Othman, R., 2006, Monitoring of Offshore Platform Subsidence Using Permanent GPS Stations. Journal of Global Positioning Systems, 5, 17-21.
  • Setan, H. and Singh, R., 2001, Deformation Analysis of a Geodetic Monitoring Network, Geomatica, 55, 333–346.
  • Wang, G., Bao, Y., Cuddus, Y., Jia, X., Serna, Jr., C., and Jing Q., 2015, A methodology to derive precise landslide displacement time series from continuous GPS observations in tectonically active and cold regions: a case study in Alaska, Natural Hazards, 77, 1939-1961.
  • Wang, X., Zhao, Q., Xi, R., Li, C., Li, G. and Li, L., 2021, Review of Bridge Structural Health Monitoring Based on GNSS: From Displacement Monitoring to Dynamic Characteristic Identification, in IEEE Access, 9, 80043-80065.
  • Xi, R., He, Q. and Meng, X., 2021, Bridge monitoring using multi-GNSS observations with high cutoff elevations: A case study, Measurement, 168, 108303.
  • Xi, R., Zhou, X., Jiang, W. and Chen, Q., 2018, Simultaneous estimation of dam displacements and reservoir level variation from GPS measurements, Measurement, 122, 247-256.
  • Xiao, R., Shi, H., He, X., Li, Z. Jia, D. and Yang, Z., 2019, Deformation monitoring of reservoir dams using GNSS: An application to south-to-north water diversion project, China, in IEEE Access, 7, 54981-54992.
  • Yang, Y., Zheng, Y., Yu, W., Chen, W. and Weng, D., 2019, Deformation monitoring using GNSS-R technology, Advances in Space Research, 63, 3303-3314.

Investigation of Vertical Deformations with GNSS Technique

Year 2022, , 615 - 625, 30.06.2022
https://doi.org/10.35414/akufemubid.1066483

Abstract

Monitoring and analysis of deformations in the earth's crust and engineering structures are among the important issues of geodesy. In order to monitor the deformations, a geodetic network consisting of reference and object points is created in general. Deformation research is carried out by analyzing the movements at the network points. Measurements for the determination of these movements can be made with classical techniques as well as with GNSS techniques. The static relative positioning is a widely used method in such precise geodetic applications. In this study; the capacity of the GNSS technique to detect vertical deformations was investigated. For this purpose, a micro geodetic network was designed in the Selcuk University Campus area. A mechanism to create virtual deformations was placed on the object point in the designed network and periodic measurements were carried out by creating virtual deformations in the vertical direction. Measurements were processed with the Bernese v5.2 scientific GNSS software, analyzed by Iterative Weighted Similarity Transformation Method using the software developed to perform deformation analysis in GNSS networks, and the determined deformations were compared with the real deformation value, considering the ionospheric activities on the measurement days. As a result of the analyses, vectorial deformation amounts compatible with the real deformation value were obtained and it was seen that the motion amounts in the direction of the coordinate components were also compatible with the virtual deformation amount given on the mechanism.

References

  • Amiri-Simkooei, A. R., Alaei-Tabatabaei, S. M., Zangeneh-Nejad, F. and Voosoghi, B., 2017, Stability Analysis of Deformation-Monitoring Network Points Using Simultaneous Observation Adjustment of Two Epochs, Journal of Surveying Engineering, 143, 1-12.
  • Barzaghi, R., Cazzaniga, N. E., De Gaetani, C. I. and Pinto, L., Tornatore, V., 2018, Estimating and Comparing Dam Deformation Using Classical and GNSS Techniques, Sensors, 18, 1-11.
  • Chen, Y. Q., 1983, Analysis of deformation surveys – a generalized method. Technical Report no. 94, Dept. of Surveying Engineering, University of New Brunswick, 122-160.
  • Chen, Y.Q., Chrzanowski, A. and Secord, J.M., 1990, A strategy for the Analysis of the Stability of Reference Points in Deformation Surveys, Cism Journal ACSGS, 44, 141-149.
  • Chrzanowski, A., Chen, Y. Q. and Secord, J. M., 1986, Report of the adhoc committee on the Analysis of Deformation Surveys, Proceedings of the FIG XVIII International Congress, Toronto, 6, 165-185.
  • Dawidowicz, K. and Krzan, G., 2014, Coordinate Estimation Accuracy of Static Precise Point Positioning Using on-line PPP Service, a Case Study, Acta Geodetica Geophyica, 49, 37–55.
  • Dogru, A., Gorgun, E. Aktug, B. and Ozener, H., 2018, Seismic hazard assessment of the central North Anatolian Fault (Turkey) from GPS derived strain rates and b-values, Geomatics, Natural Hazards and Risk, 9, 356-367.
  • Du, Y., Huang, G., Zhang, Q., Gao, Y. and Gao., Y., 2020, Asynchronous RTK Method for Detecting the Stability of the Reference Station in GNSS Deformation Monitoring, Sensors, 20, 1-12.
  • Gokalp, E. and Tasci, L., 2009, Deformation Monitoring by GPS At Embankment Dams and Deformation Analysis, Survey Review, 41, 86-102.
  • Hofman-Wellenhof, B., Lichtenegger, H. and Wasle, E., 2008, GNSS - Global Navigation Satellite Systems, Austria, Springer, 183-185.
  • Konakoglu, B. and Gokalp, E., 2018, Deformation Measurements and Analysis with Robust Methods: A Case Study, Deriner Dam. Turkish Journal of Science & Technology, 13, 99-103.
  • Lim, M. C., Setan, H., Othman, R. and Chong A K., 2012, Deformation detection for ISKANDARnet, Survey Review, 44, 198-207.
  • Nowel, K., 2016, Investigating efficacy of robust M-estimation of deformation from observation differences, Survey Review, 48, 21-30.
  • Nowel, K. and Kaminski, W., 2014, Robust Estimation of Deformation from Observation Differences for Free Control Networks, Journal of Geodesy, 88, 749-764.
  • Setan, H. and Othman, R., 2006, Monitoring of Offshore Platform Subsidence Using Permanent GPS Stations. Journal of Global Positioning Systems, 5, 17-21.
  • Setan, H. and Singh, R., 2001, Deformation Analysis of a Geodetic Monitoring Network, Geomatica, 55, 333–346.
  • Wang, G., Bao, Y., Cuddus, Y., Jia, X., Serna, Jr., C., and Jing Q., 2015, A methodology to derive precise landslide displacement time series from continuous GPS observations in tectonically active and cold regions: a case study in Alaska, Natural Hazards, 77, 1939-1961.
  • Wang, X., Zhao, Q., Xi, R., Li, C., Li, G. and Li, L., 2021, Review of Bridge Structural Health Monitoring Based on GNSS: From Displacement Monitoring to Dynamic Characteristic Identification, in IEEE Access, 9, 80043-80065.
  • Xi, R., He, Q. and Meng, X., 2021, Bridge monitoring using multi-GNSS observations with high cutoff elevations: A case study, Measurement, 168, 108303.
  • Xi, R., Zhou, X., Jiang, W. and Chen, Q., 2018, Simultaneous estimation of dam displacements and reservoir level variation from GPS measurements, Measurement, 122, 247-256.
  • Xiao, R., Shi, H., He, X., Li, Z. Jia, D. and Yang, Z., 2019, Deformation monitoring of reservoir dams using GNSS: An application to south-to-north water diversion project, China, in IEEE Access, 7, 54981-54992.
  • Yang, Y., Zheng, Y., Yu, W., Chen, W. and Weng, D., 2019, Deformation monitoring using GNSS-R technology, Advances in Space Research, 63, 3303-3314.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Burhaneddin Bilgen 0000-0002-1955-7568

Cevat İnal 0000-0001-8980-2074

Publication Date June 30, 2022
Submission Date February 1, 2022
Published in Issue Year 2022

Cite

APA Bilgen, B., & İnal, C. (2022). GNSS Tekniği ile Düşey Yöndeki Deformasyonların Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(3), 615-625. https://doi.org/10.35414/akufemubid.1066483
AMA Bilgen B, İnal C. GNSS Tekniği ile Düşey Yöndeki Deformasyonların Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2022;22(3):615-625. doi:10.35414/akufemubid.1066483
Chicago Bilgen, Burhaneddin, and Cevat İnal. “GNSS Tekniği Ile Düşey Yöndeki Deformasyonların Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 3 (June 2022): 615-25. https://doi.org/10.35414/akufemubid.1066483.
EndNote Bilgen B, İnal C (June 1, 2022) GNSS Tekniği ile Düşey Yöndeki Deformasyonların Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 3 615–625.
IEEE B. Bilgen and C. İnal, “GNSS Tekniği ile Düşey Yöndeki Deformasyonların Araştırılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 3, pp. 615–625, 2022, doi: 10.35414/akufemubid.1066483.
ISNAD Bilgen, Burhaneddin - İnal, Cevat. “GNSS Tekniği Ile Düşey Yöndeki Deformasyonların Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/3 (June 2022), 615-625. https://doi.org/10.35414/akufemubid.1066483.
JAMA Bilgen B, İnal C. GNSS Tekniği ile Düşey Yöndeki Deformasyonların Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:615–625.
MLA Bilgen, Burhaneddin and Cevat İnal. “GNSS Tekniği Ile Düşey Yöndeki Deformasyonların Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 3, 2022, pp. 615-2, doi:10.35414/akufemubid.1066483.
Vancouver Bilgen B, İnal C. GNSS Tekniği ile Düşey Yöndeki Deformasyonların Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(3):615-2.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.