Elyaflı Kompozit Eğri Plaka Çerçevelerin Dinamik ve Burkulma Analizi
Year 2023,
, 228 - 246, 01.03.2023
Oğuzhan Daş
,
Hasan Öztürk
,
Can Gönenli
Abstract
Bu çalışma, ince eğri elyaflı kompozit plaka çerçeve yapıların dinamik ve burkulma analizlerini Klasik Plaka Teorisi ve Sonlu Elemanlar Analizi ile incelemektedir. Bu amaçla, yapının eğrilik yarıçapının, en-boy oranının ve elyaf düzeninin ilk on doğal frekans, mod şekilleri, kritik burkulma yükü ve birinci dinamik kararlılık bölgeleri üzerine olan etkileri araştırılmıştır. Ayrıca, iki bölütlü yapı da ele alınmıştır. Dinamik ve burkulma analizleri MATLAB üzerinden bir bilgisayar kodu aracılığı ile gerçekleştirilmiştir. Buradan elde edilen sonuçlar aynı analizlerin ANSYS üzerinden gerçekleştirilmesi ile doğrulanmıştır. Sonuçlar olarak yapının en-boy oranının ve laminasyon düzeninin dinamik özellikleri büyük ölçüde etkilediği, eğrilik yarıçapının ise diğer parametrelere göre yapının dinamik özellikleri üzerinde daha az etki oluşturduğu görülmüştür.
References
- Abualnour, M., Houari, M.S., Tounsi, A., Bedia, E. A., & Mahmoud, S.R., 2018. A novel quasi-3d trigonometric plate theory for free vibration analysis of advanced composite plates. Composite Structures, 184, 688–697.
- Bolotin, V.V., 1964. The dynamic stability of Elastic Systems, San Francisco.
- Bourada, F., Amara, K., & Tounsi, A., 2016. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory. Steel and Composite Structures, 21(6), 1287–1306.
- Chen, J. E., Zhang, W., Sun, M., Yao, M. H., & Liu, J., 2017. Free vibration analysis of composite sandwich plates with different truss cores. Mechanics of Advanced Materials and Structures, 25(9), 701–713.
- Chikh, A., Tounsi, A., Hebali, H., & Mahmoud, S. R., 2017. Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT. Smart Structures and Systems, 19(3), 289–297.
- Demir, Ç., Ersoy, H., Mercan, K., Civalek, Ö., 2017. Free vibration analysis of annular sector plates via conical shell equations. Curved and Layered Structures, 4(1), 146–157.
- Dey, P., & Singha, M. K., 2006. Dynamic stability analysis of composite skew plates subjected to periodic in-plane load. Thin-Walled Structures, 44(9), 937–942.
- Fang, J., Zheng, S., Xiao, J., & Zhang, X., 2020. Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment. Aerospace Science and Technology, 106, 106146.
- Fazilati, J., 2017. Stability analysis of variable stiffness composite laminated plates with delamination using spline-FSM. Latin American Journal of Solids and Structures, 14(3), 528–543.
- Hao, P., Yuan, X., Liu, H., Wang, B., Liu, C., Yang, D., & Zhan, S., 2017. Isogeometrıc buckling analysis of composite variable-stiffness panels. Composite Structures, 165, 192–208.
- Marjanović, M., Kolarevic, N., Nefovska-Danilovic, M., & Petronijevic, M., 2017. Shear deformable dynamic stiffness elements for a free vibration analysis of composite plate assemblies – part II: Numerical examples. Composite Structures, 159, 183–196.
Petyt, M., 2015. Introduction to finite element vibration analysis, New York.
- Rezaiee-Pajand, M., Sobhani, E., & Masoodi, A. R., 2020. Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method. Aerospace Science and Technology, 105, 105998.
- Samukham, S., Raju, G., Wu, Z., & Vyasarayani, C. P., 2018. Dynamic instability analysis of variable angle tow composite plate with delamination around a cut-out. Mechanics of Advanced Materials and Structures, 26(1), 62–70.
- Serdoun, S. M. N., & Hamza Cherif, S. M., 2016. Free vibration analysis of composite and sandwich plates by alternative hierarchical finite element method based on Reddy’s C1 HSDT. Journal of Sandwich Structures & Materials, 18(4), 501–528.
- Shafei, E., Faroughi, S., & Rabczuk, T., 2019. Isogeometric HSDT approach for dynamic stability analysis of general anisotropic composite plates. Composite Structures, 220, 926–939.
- Shankar, G., & Mahato, P. K., 2017. Vibration analysis and control of delaminated and/or damaged composite plate structures using finite element analysis. Materials at High Temperatures, 34(5-6), 342–349.
- Thakur, B. R., Verma, S., Singh, B. N., & Maiti, D. K., 2020. Dynamic analysis of folded laminated composite plate using nonpolynomial shear deformation theory. Aerospace Science and Technology, 106, 106083.
- Tornabene, F., Fantuzzi, N., & Bacciocchi, M., 2018. Strong and weak formulations based on differential and integral quadrature methods for the free vibration analysis of composite plates and shells: Convergence and accuracy. Engineering Analysis with Boundary Elements, 92, 3–37.
- Vidal, P., Gallimard, L., & Polit, O., 2019. Free vibration analysis of composite plates based on a variable separation method. Composite Structures, 230, 111493.
- Zghal, S., Frikha, A., & Dammak, F. (2018). Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Composites Part B: Engineering, 150, 165–183.
Dynamic and Buckling Analysis of the Laminated Composite Curved Plate Frame Structures
Year 2023,
, 228 - 246, 01.03.2023
Oğuzhan Daş
,
Hasan Öztürk
,
Can Gönenli
Abstract
This study presents the dynamic and buckling analysis of the laminated composite thin arch plate frame
structures employing Classical Plate Theory with Finite Element Analysis. For this purpose, The effects of the radius of curvature, aspect ratio, and stacking order of such structures on the first ten natural frequencies, mode shapes, critical buckling load, and the first unstable regions are investigated. Besides, the two-bay curved plate frame structure is investigated. In order to perform dynamic and buckling analyses, a computer code is developed and executed via MATLAB. The results are compared and validated with those of ANSYS. It is concluded that the aspect ratio or the stacking order affects the dynamic characteristics of the curved plate frame structure considerably while the radius of curvature relatively has less impact on such dynamic properties of the structure.
References
- Abualnour, M., Houari, M.S., Tounsi, A., Bedia, E. A., & Mahmoud, S.R., 2018. A novel quasi-3d trigonometric plate theory for free vibration analysis of advanced composite plates. Composite Structures, 184, 688–697.
- Bolotin, V.V., 1964. The dynamic stability of Elastic Systems, San Francisco.
- Bourada, F., Amara, K., & Tounsi, A., 2016. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory. Steel and Composite Structures, 21(6), 1287–1306.
- Chen, J. E., Zhang, W., Sun, M., Yao, M. H., & Liu, J., 2017. Free vibration analysis of composite sandwich plates with different truss cores. Mechanics of Advanced Materials and Structures, 25(9), 701–713.
- Chikh, A., Tounsi, A., Hebali, H., & Mahmoud, S. R., 2017. Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT. Smart Structures and Systems, 19(3), 289–297.
- Demir, Ç., Ersoy, H., Mercan, K., Civalek, Ö., 2017. Free vibration analysis of annular sector plates via conical shell equations. Curved and Layered Structures, 4(1), 146–157.
- Dey, P., & Singha, M. K., 2006. Dynamic stability analysis of composite skew plates subjected to periodic in-plane load. Thin-Walled Structures, 44(9), 937–942.
- Fang, J., Zheng, S., Xiao, J., & Zhang, X., 2020. Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment. Aerospace Science and Technology, 106, 106146.
- Fazilati, J., 2017. Stability analysis of variable stiffness composite laminated plates with delamination using spline-FSM. Latin American Journal of Solids and Structures, 14(3), 528–543.
- Hao, P., Yuan, X., Liu, H., Wang, B., Liu, C., Yang, D., & Zhan, S., 2017. Isogeometrıc buckling analysis of composite variable-stiffness panels. Composite Structures, 165, 192–208.
- Marjanović, M., Kolarevic, N., Nefovska-Danilovic, M., & Petronijevic, M., 2017. Shear deformable dynamic stiffness elements for a free vibration analysis of composite plate assemblies – part II: Numerical examples. Composite Structures, 159, 183–196.
Petyt, M., 2015. Introduction to finite element vibration analysis, New York.
- Rezaiee-Pajand, M., Sobhani, E., & Masoodi, A. R., 2020. Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method. Aerospace Science and Technology, 105, 105998.
- Samukham, S., Raju, G., Wu, Z., & Vyasarayani, C. P., 2018. Dynamic instability analysis of variable angle tow composite plate with delamination around a cut-out. Mechanics of Advanced Materials and Structures, 26(1), 62–70.
- Serdoun, S. M. N., & Hamza Cherif, S. M., 2016. Free vibration analysis of composite and sandwich plates by alternative hierarchical finite element method based on Reddy’s C1 HSDT. Journal of Sandwich Structures & Materials, 18(4), 501–528.
- Shafei, E., Faroughi, S., & Rabczuk, T., 2019. Isogeometric HSDT approach for dynamic stability analysis of general anisotropic composite plates. Composite Structures, 220, 926–939.
- Shankar, G., & Mahato, P. K., 2017. Vibration analysis and control of delaminated and/or damaged composite plate structures using finite element analysis. Materials at High Temperatures, 34(5-6), 342–349.
- Thakur, B. R., Verma, S., Singh, B. N., & Maiti, D. K., 2020. Dynamic analysis of folded laminated composite plate using nonpolynomial shear deformation theory. Aerospace Science and Technology, 106, 106083.
- Tornabene, F., Fantuzzi, N., & Bacciocchi, M., 2018. Strong and weak formulations based on differential and integral quadrature methods for the free vibration analysis of composite plates and shells: Convergence and accuracy. Engineering Analysis with Boundary Elements, 92, 3–37.
- Vidal, P., Gallimard, L., & Polit, O., 2019. Free vibration analysis of composite plates based on a variable separation method. Composite Structures, 230, 111493.
- Zghal, S., Frikha, A., & Dammak, F. (2018). Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Composites Part B: Engineering, 150, 165–183.